Spaces:
Sleeping
Sleeping
add macro_index_mse
Browse files- README.md +2 -1
- matching_series.py +2 -0
README.md
CHANGED
@@ -28,7 +28,7 @@ At minium, the metric requires the original time-series and the generated time-s
|
|
28 |
>>> metric = evaluate.load("bowdbeg/matching_series")
|
29 |
>>> results = metric.compute(references=references, predictions=predictions, batch_size=1000)
|
30 |
>>> print(results)
|
31 |
-
{'matching_mse': 0.
|
32 |
```
|
33 |
|
34 |
### Inputs
|
@@ -51,6 +51,7 @@ Let prediction instances be $P = \{p_1, p_2, \ldots, p_n\}$ and reference instan
|
|
51 |
- **macro_matching_mse**: (float): Average of the matching_mse_features.
|
52 |
- **macro_covered_mse**: (float): Average of the covered_mse_features.
|
53 |
- **macro_harmonic_mean**: (float): Average of the harmonic_mean_features.
|
|
|
54 |
|
55 |
#### Values from Popular Papers
|
56 |
<!-- *Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.* -->
|
|
|
28 |
>>> metric = evaluate.load("bowdbeg/matching_series")
|
29 |
>>> results = metric.compute(references=references, predictions=predictions, batch_size=1000)
|
30 |
>>> print(results)
|
31 |
+
{'matching_mse': 0.15873331613053895, 'harmonic_mean': 0.15623569099681772, 'covered_mse': 0.15381544718035087, 'index_mse': 0.16636189201532087, 'matching_mse_features': [0.13739837269222452, 0.1395309409295018, 0.13677679887355126, 0.14408421162706211, 0.1430115910456261, 0.13726657544044085, 0.14274372684301717, 0.13504614539190338, 0.13853582796877975, 0.14482307626368343], 'harmonic_mean_features': [0.1309991815519093, 0.13157175020534279, 0.12735134531950718, 0.1327483317911355, 0.1336402851605765, 0.12878380179856022, 0.1344831997941457, 0.12782689483798823, 0.12909420446395195, 0.13417435670997752], 'covered_mse_features': [0.12516953618356524, 0.12447158260731798, 0.11914118322950448, 0.12306606276504639, 0.1254216201001874, 0.12128844181049621, 0.12712643943219143, 0.12134032531607968, 0.12085741660832867, 0.12498436126166071], 'index_mse_features': [0.16968036010688156, 0.1624888691672768, 0.15926142198600082, 0.17250634507748022, 0.16713668302081525, 0.16663213728264645, 0.1596766027744231, 0.16251306560725656, 0.17160303243460656, 0.17212040269582168], 'macro_matching_mse': 0.13992172670757905, 'macro_covered_mse': 0.12328669693143782, 'macro_harmonic_mean': 0.13106733516330948, 'macro_index_mse': 0.1663618920153209}
|
32 |
```
|
33 |
|
34 |
### Inputs
|
|
|
51 |
- **macro_matching_mse**: (float): Average of the matching_mse_features.
|
52 |
- **macro_covered_mse**: (float): Average of the covered_mse_features.
|
53 |
- **macro_harmonic_mean**: (float): Average of the harmonic_mean_features.
|
54 |
+
- **macro_index_mse**: (float): Average of the index_mse_features.
|
55 |
|
56 |
#### Values from Popular Papers
|
57 |
<!-- *Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.* -->
|
matching_series.py
CHANGED
@@ -204,6 +204,7 @@ class matching_series(evaluate.Metric):
|
|
204 |
macro_matching_mse = statistics.mean(matching_mse_features)
|
205 |
macro_covered_mse = statistics.mean(covered_mse_features)
|
206 |
macro_harmonic_mean = statistics.mean(harmonic_mean_features)
|
|
|
207 |
return {
|
208 |
"matching_mse": matching_mse,
|
209 |
"harmonic_mean": harmonic_mean,
|
@@ -216,4 +217,5 @@ class matching_series(evaluate.Metric):
|
|
216 |
"macro_matching_mse": macro_matching_mse,
|
217 |
"macro_covered_mse": macro_covered_mse,
|
218 |
"macro_harmonic_mean": macro_harmonic_mean,
|
|
|
219 |
}
|
|
|
204 |
macro_matching_mse = statistics.mean(matching_mse_features)
|
205 |
macro_covered_mse = statistics.mean(covered_mse_features)
|
206 |
macro_harmonic_mean = statistics.mean(harmonic_mean_features)
|
207 |
+
macro_index_mse = statistics.mean(index_mse_features)
|
208 |
return {
|
209 |
"matching_mse": matching_mse,
|
210 |
"harmonic_mean": harmonic_mean,
|
|
|
217 |
"macro_matching_mse": macro_matching_mse,
|
218 |
"macro_covered_mse": macro_covered_mse,
|
219 |
"macro_harmonic_mean": macro_harmonic_mean,
|
220 |
+
"macro_index_mse": macro_index_mse,
|
221 |
}
|