# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import statistics from typing import Optional, Union import datasets import evaluate import numpy as np # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This new module is designed to solve this great ML task and is crafted with a lot of care. """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of generated time series. shape: (num_generation, num_timesteps, num_features) references: list of reference shape: (num_reference, num_timesteps, num_features) Returns: Examples: Examples should be written in doctest format, and should illustrate how to use the function. >>> my_new_module = evaluate.load("bowdbeg/matching_series") >>> results = my_new_module.compute(references=[[[0.0, 1.0]]], predictions=[[[0.0, 1.0]]]) >>> print(results) {'matchin': 1.0} """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class matching_series(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features( { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("float"))), "references": datasets.Sequence(datasets.Sequence(datasets.Value("float"))), } ), # Homepage of the module for documentation homepage="https://huggingface.co/spaces/bowdbeg/matching_series", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"], ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" pass def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]: """Compute the evaluation module. Usage of positional arguments is not allowed to prevent mistakes. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. **kwargs (optional): Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`] method (see details in the docstring). Return: `dict` or `None` - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`). - `None` if the evaluation module is not run on the main process (`process_id != 0`). ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1]) ``` """ all_kwargs = {"predictions": predictions, "references": references, **kwargs} if predictions is None and references is None: missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs} all_kwargs.update(missing_kwargs) else: missing_inputs = [k for k in self._feature_names() if k not in all_kwargs] if missing_inputs: raise ValueError( f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}" ) inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()} compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()} return self._compute(**inputs, **compute_kwargs) def _compute( self, predictions: Union[list, np.ndarray], references: Union[list, np.ndarray], batch_size: Optional[int] = None, ): """ Compute the scores of the module given the predictions and references Args: predictions: list of generated time series. shape: (num_generation, num_timesteps, num_features) references: list of reference shape: (num_reference, num_timesteps, num_features) batch_size: batch size to use for the computation. If None, the whole dataset is processed at once. Returns: """ predictions = np.array(predictions) references = np.array(references) if predictions.shape[1:] != references.shape[1:]: raise ValueError( "The number of features in the predictions and references should be the same. predictions: {}, references: {}".format( predictions.shape[1:], references.shape[1:] ) ) # at first, convert the inputs to numpy arrays # MSE between predictions and references for all example combinations for each features # shape: (num_generation, num_reference, num_features) if batch_size is not None: mse = np.zeros((len(predictions), len(references), predictions.shape[-1])) # iterate over the predictions and references in batches for i in range(0, len(predictions) + batch_size, batch_size): for j in range(0, len(references) + batch_size, batch_size): mse[i : i + batch_size, j : j + batch_size] = np.mean( (predictions[i : i + batch_size, None] - references[None, j : j + batch_size]) ** 2, axis=-2 ) else: mse = np.mean((predictions[:, None] - references) ** 2, axis=1) index_mse = mse.diagonal(axis1=0, axis2=1).mean() # matching scores mse_mean = mse.mean(axis=-1) # best match for each generated time series # shape: (num_generation,) best_match = np.argmin(mse_mean, axis=-1) # matching mse # shape: (num_generation,) matching_mse = mse_mean[np.arange(len(best_match)), best_match].mean() # best match for each reference time series # shape: (num_reference,) best_match_inv = np.argmin(mse_mean, axis=0) covered_mse = mse_mean[best_match_inv, np.arange(len(best_match_inv))].mean() harmonic_mean = 2 / (1 / matching_mse + 1 / covered_mse) # take matching for each feature and compute metrics for them matching_mse_features = [] covered_mse_features = [] harmonic_mean_features = [] index_mse_features = [] for f in range(predictions.shape[-1]): mse_f = mse[:, :, f] index_mse_f = mse_f.diagonal(axis1=0, axis2=1).mean() best_match_f = np.argmin(mse_f, axis=-1) matching_mse_f = mse_f[np.arange(len(best_match_f)), best_match_f].mean() best_match_inv_f = np.argmin(mse_f, axis=0) covered_mse_f = mse_f[best_match_inv_f, np.arange(len(best_match_inv_f))].mean() harmonic_mean_f = 2 / (1 / matching_mse_f + 1 / covered_mse_f) matching_mse_features.append(matching_mse_f) covered_mse_features.append(covered_mse_f) harmonic_mean_features.append(harmonic_mean_f) index_mse_features.append(index_mse_f) macro_matching_mse = statistics.mean(matching_mse_features) macro_covered_mse = statistics.mean(covered_mse_features) macro_harmonic_mean = statistics.mean(harmonic_mean_features) macro_index_mse = statistics.mean(index_mse_features) return { "matching_mse": matching_mse, "harmonic_mean": harmonic_mean, "covered_mse": covered_mse, "index_mse": index_mse, "matching_mse_features": matching_mse_features, "harmonic_mean_features": harmonic_mean_features, "covered_mse_features": covered_mse_features, "index_mse_features": index_mse_features, "macro_matching_mse": macro_matching_mse, "macro_covered_mse": macro_covered_mse, "macro_harmonic_mean": macro_harmonic_mean, "macro_index_mse": macro_index_mse, }