brandonsmart commited on
Commit
b2244fb
1 Parent(s): 5ed9923

Updated Readme

Browse files
Files changed (1) hide show
  1. README.md +12 -54
README.md CHANGED
@@ -1,54 +1,12 @@
1
- # Splatt3R: Zero-shot Gaussian Splatting from Uncalibarated Image Pairs
2
-
3
- Official implementation of `Zero-shot Gaussian Splatting from Uncalibarated Image Pairs`
4
-
5
- Links removed for anonymity:
6
- [Project Page](), [Splatt3R arXiv]()
7
-
8
- ## Installation
9
-
10
- 1. Clone Splatt3R
11
- ```bash
12
- git clone <redacted github link>
13
- cd splatt3r
14
- ```
15
-
16
- 2. Setup Anaconda Environment
17
- ```bash
18
- conda env create -f environment.yml
19
- pip install git+https://github.com/dcharatan/diff-gaussian-rasterization-modified
20
- ```
21
-
22
- 3. (Optional) Compile the CUDA kernels for RoPE (as in MASt3R and CroCo v2)
23
-
24
- ```bash
25
- cd src/dust3r_src/croco/models/curope/
26
- python setup.py build_ext --inplace
27
- cd ../../../../../
28
- ```
29
-
30
- ## Checkpoints
31
-
32
- We train our model using the pretrained `MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric` checkpoint from the MASt3R authors, available from [the MASt3R GitHub repo](https://github.com/naver/mast3r). This checkpoint is placed at the file path `checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth`.
33
-
34
- A pretrained Splatt3R model can be downloaded [here]() (redacted link).
35
-
36
- ## Data
37
-
38
- We use ScanNet++ to train our model. We download the data from the [official ScanNet++ homepage](https://kaldir.vc.in.tum.de/scannetpp/) and process the data using SplaTAM's modified version of [the ScanNet++ toolkit](https://github.com/Nik-V9/scannetpp). We save the processed data to the 'processed' subfolder of the ScanNet++ root directory.
39
-
40
- Our generated test coverage files, and our training and testing splits, can be downloaded [here]() (redacted link), and placed in `data/scannetpp`.
41
-
42
- ## Demo
43
-
44
- The Gradio demo can be run using `python demo.py <checkpoint_path>`, replacing `<checkpoint_path>` with the trained network path. A checkpoint will be available for the public release of this code.
45
-
46
- This demo generates a `.ply` file that represents the scene, which can be downloaded and rendered using online 3D Gaussian Splatting viewers such as [here](https://projects.markkellogg.org/threejs/demo_gaussian_splats_3d.php?art=1&cu=0,-1,0&cp=0,1,0&cla=1,0,0&aa=false&2d=false&sh=0) or [here](https://playcanvas.com/supersplat/editor).
47
-
48
- ## Training
49
-
50
- Our training run can be recreated by running `python main.py configs/main.yaml`. Other configurations can be found in the `configs` folder.
51
-
52
- ## BibTeX
53
-
54
- Forthcoming arXiv citation
 
1
+ ---
2
+ title: Splatt3R: Zero-shot Gaussian Splatting from Uncalibarated Image Pairs
3
+ emoji: ⛰️
4
+ colorFrom: indigo
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 4.37.2
8
+ app_file: demo.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference