Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
import pytesseract
|
5 |
+
import PyPDF2
|
6 |
+
import pdfplumber
|
7 |
+
import torch
|
8 |
+
|
9 |
+
# Load the BART model for summarization and NLI
|
10 |
+
@st.cache_resource
|
11 |
+
def load_model():
|
12 |
+
return pipeline("zero-shot-classification", model="facebook/bart-large-mnli", device=0 if torch.cuda.is_available() else -1)
|
13 |
+
|
14 |
+
classifier = load_model()
|
15 |
+
|
16 |
+
# OCR for Image using Tesseract
|
17 |
+
def extract_text_from_image(image):
|
18 |
+
return pytesseract.image_to_string(image)
|
19 |
+
|
20 |
+
# Extract text from PDF using pdfplumber
|
21 |
+
def extract_text_from_pdf(pdf_file):
|
22 |
+
text = ""
|
23 |
+
with pdfplumber.open(pdf_file) as pdf:
|
24 |
+
for page in pdf.pages:
|
25 |
+
text += page.extract_text()
|
26 |
+
return text
|
27 |
+
|
28 |
+
# Summarize, interpret and give actionable insights
|
29 |
+
def analyze_report(text):
|
30 |
+
# Provide a summary
|
31 |
+
summary = classifier(text, candidate_labels=["summary"], multi_label=False)['labels'][0]
|
32 |
+
|
33 |
+
# Interpretation of results
|
34 |
+
interpretation = classifier(text, candidate_labels=["interpretation", "normal", "abnormal"], multi_label=True)
|
35 |
+
|
36 |
+
# Recommendations
|
37 |
+
recommendations = classifier(text, candidate_labels=["follow-up", "Holistic/OTC treatment", "dietary change", "medication"], multi_label=True)
|
38 |
+
|
39 |
+
return {
|
40 |
+
"summary": summary,
|
41 |
+
"interpretation": interpretation['labels'],
|
42 |
+
"recommendations": recommendations['labels']
|
43 |
+
}
|
44 |
+
|
45 |
+
# Streamlit UI
|
46 |
+
st.title("Medical Lab Report Analyzer")
|
47 |
+
st.write("Upload your medical lab report (PDF/Image) for insights.")
|
48 |
+
|
49 |
+
uploaded_file = st.file_uploader("Choose a PDF/Image file", type=["pdf", "png", "jpg", "jpeg"])
|
50 |
+
|
51 |
+
if uploaded_file:
|
52 |
+
file_type = uploaded_file.type
|
53 |
+
|
54 |
+
# Extract text based on file type
|
55 |
+
if file_type == "application/pdf":
|
56 |
+
with st.spinner("Extracting text from PDF..."):
|
57 |
+
extracted_text = extract_text_from_pdf(uploaded_file)
|
58 |
+
else:
|
59 |
+
with st.spinner("Extracting text from Image..."):
|
60 |
+
image = Image.open(uploaded_file)
|
61 |
+
extracted_text = extract_text_from_image(image)
|
62 |
+
|
63 |
+
# Analyze the extracted text
|
64 |
+
if extracted_text:
|
65 |
+
with st.spinner("Analyzing report..."):
|
66 |
+
result = analyze_report(extracted_text)
|
67 |
+
|
68 |
+
# Display the results
|
69 |
+
st.subheader("Summary")
|
70 |
+
st.write(result['summary'])
|
71 |
+
|
72 |
+
st.subheader("Interpretation of Results")
|
73 |
+
for label in result['interpretation']:
|
74 |
+
st.write(f"- {label.capitalize()}")
|
75 |
+
|
76 |
+
st.subheader("Actionable Recommendations")
|
77 |
+
for rec in result['recommendations']:
|
78 |
+
st.write(f"- {rec.capitalize()}")
|
79 |
+
else:
|
80 |
+
st.error("No text could be extracted. Please try with a different file.")
|