import sys import torch import logging import gradio as gr import speechbrain as sb from pathlib import Path import os import torchaudio from hyperpyyaml import load_hyperpyyaml from speechbrain.tokenizers.SentencePiece import SentencePiece from speechbrain.utils.data_utils import undo_padding from speechbrain.utils.distributed import run_on_main logger = logging.getLogger(__name__) # Define training procedure class ASR(sb.core.Brain): def compute_forward(self, batch, stage): """Forward computations from the waveform batches to the output probabilities.""" batch = batch.to(self.device) wavs, wav_lens = batch.sig wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) if stage == sb.Stage.TRAIN: if hasattr(self.hparams, "augmentation"): wavs = self.hparams.augmentation(wavs, wav_lens) # Forward pass feats = self.modules.wav2vec2(wavs, wav_lens) x = self.modules.enc(feats) logits = self.modules.ctc_lin(x) p_ctc = self.hparams.log_softmax(logits) return p_ctc, wav_lens def treat_wav(self, sig): feats = self.modules.wav2vec2(sig.to("cpu"), torch.tensor([1]).to("cpu")) feats = self.modules.enc(feats) logits = self.modules.ctc_lin(feats) p_ctc = self.hparams.log_softmax(logits) predicted_words = [] for logs in p_ctc: text = decoder.decode(logs.detach().cpu().numpy()) predicted_words.append(text.split(" ")) return " ".join(predicted_words[0]) def compute_objectives(self, predictions, batch, stage): """Computes the loss (CTC) given predictions and targets.""" p_ctc, wav_lens = predictions ids = batch.id tokens, tokens_lens = batch.tokens loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens) if stage != sb.Stage.TRAIN: predicted_tokens = sb.decoders.ctc_greedy_decode( p_ctc, wav_lens, blank_id=self.hparams.blank_index ) # Decode token terms to words if self.hparams.use_language_modelling: predicted_words = [] for logs in p_ctc: text = decoder.decode(logs.detach().cpu().numpy()) predicted_words.append(text.split(" ")) else: predicted_words = [ "".join(self.tokenizer.decode_ndim(utt_seq)).split(" ") for utt_seq in predicted_tokens ] # Convert indices to words target_words = [wrd.split(" ") for wrd in batch.wrd] self.wer_metric.append(ids, predicted_words, target_words) self.cer_metric.append(ids, predicted_words, target_words) return loss def fit_batch(self, batch): """Train the parameters given a single batch in input""" should_step = self.step % self.grad_accumulation_factor == 0 # Managing automatic mixed precision # TOFIX: CTC fine-tuning currently is unstable # This is certainly due to CTC being done in fp16 instead of fp32 if self.auto_mix_prec: with torch.cuda.amp.autocast(): with self.no_sync(): outputs = self.compute_forward(batch, sb.Stage.TRAIN) loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN) with self.no_sync(not should_step): self.scaler.scale( loss / self.grad_accumulation_factor ).backward() if should_step: if not self.hparams.wav2vec2.freeze: self.scaler.unscale_(self.wav2vec_optimizer) self.scaler.unscale_(self.model_optimizer) if self.check_gradients(loss): if not self.hparams.wav2vec2.freeze: if self.optimizer_step >= self.hparams.warmup_steps: self.scaler.step(self.wav2vec_optimizer) self.scaler.step(self.model_optimizer) self.scaler.update() self.zero_grad() self.optimizer_step += 1 else: # This is mandatory because HF models have a weird behavior with DDP # on the forward pass with self.no_sync(): outputs = self.compute_forward(batch, sb.Stage.TRAIN) loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN) with self.no_sync(not should_step): (loss / self.grad_accumulation_factor).backward() if should_step: if self.check_gradients(loss): if not self.hparams.wav2vec2.freeze: if self.optimizer_step >= self.hparams.warmup_steps: self.wav2vec_optimizer.step() self.model_optimizer.step() self.zero_grad() self.optimizer_step += 1 self.on_fit_batch_end(batch, outputs, loss, should_step) return loss.detach().cpu() def evaluate_batch(self, batch, stage): """Computations needed for validation/test batches""" predictions = self.compute_forward(batch, stage=stage) with torch.no_grad(): loss = self.compute_objectives(predictions, batch, stage=stage) return loss.detach() def on_stage_start(self, stage, epoch): """Gets called at the beginning of each epoch""" if stage != sb.Stage.TRAIN: self.cer_metric = self.hparams.cer_computer() self.wer_metric = self.hparams.error_rate_computer() def on_stage_end(self, stage, stage_loss, epoch): """Gets called at the end of an epoch.""" # Compute/store important stats stage_stats = {"loss": stage_loss} if stage == sb.Stage.TRAIN: self.train_stats = stage_stats else: stage_stats["CER"] = self.cer_metric.summarize("error_rate") stage_stats["WER"] = self.wer_metric.summarize("error_rate") # Perform end-of-iteration things, like annealing, logging, etc. if stage == sb.Stage.VALID: old_lr_model, new_lr_model = self.hparams.lr_annealing_model( stage_stats["loss"] ) old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec( stage_stats["loss"] ) sb.nnet.schedulers.update_learning_rate( self.model_optimizer, new_lr_model ) if not self.hparams.wav2vec2.freeze: sb.nnet.schedulers.update_learning_rate( self.wav2vec_optimizer, new_lr_wav2vec ) self.hparams.train_logger.log_stats( stats_meta={ "epoch": epoch, "lr_model": old_lr_model, "lr_wav2vec": old_lr_wav2vec, }, train_stats=self.train_stats, valid_stats=stage_stats, ) self.checkpointer.save_and_keep_only( meta={"WER": stage_stats["WER"]}, min_keys=["WER"], ) elif stage == sb.Stage.TEST: self.hparams.train_logger.log_stats( stats_meta={"Epoch loaded": self.hparams.epoch_counter.current}, test_stats=stage_stats, ) with open(self.hparams.wer_file, "w") as w: self.wer_metric.write_stats(w) def init_optimizers(self): "Initializes the wav2vec2 optimizer and model optimizer" # If the wav2vec encoder is unfrozen, we create the optimizer if not self.hparams.wav2vec2.freeze: self.wav2vec_optimizer = self.hparams.wav2vec_opt_class( self.modules.wav2vec2.parameters() ) if self.checkpointer is not None: self.checkpointer.add_recoverable( "wav2vec_opt", self.wav2vec_optimizer ) self.model_optimizer = self.hparams.model_opt_class( self.hparams.model.parameters() ) if self.checkpointer is not None: self.checkpointer.add_recoverable("modelopt", self.model_optimizer) def zero_grad(self, set_to_none=False): if not self.hparams.wav2vec2.freeze: self.wav2vec_optimizer.zero_grad(set_to_none) self.model_optimizer.zero_grad(set_to_none) # Define custom data procedure def dataio_prepare(hparams): """This function prepares the datasets to be used in the brain class. It also defines the data processing pipeline through user-defined functions.""" # 1. Define datasets data_folder = hparams["data_folder"] train_data = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=hparams["train_csv"], replacements={"data_root": data_folder}, ) if hparams["sorting"] == "ascending": # we sort training data to speed up training and get better results. train_data = train_data.filtered_sorted( sort_key="duration", key_max_value={"duration": hparams["avoid_if_longer_than"]}, ) # when sorting do not shuffle in dataloader ! otherwise is pointless hparams["dataloader_options"]["shuffle"] = False elif hparams["sorting"] == "descending": train_data = train_data.filtered_sorted( sort_key="duration", reverse=True, key_max_value={"duration": hparams["avoid_if_longer_than"]}, ) # when sorting do not shuffle in dataloader ! otherwise is pointless hparams["dataloader_options"]["shuffle"] = False elif hparams["sorting"] == "random": pass else: raise NotImplementedError( "sorting must be random, ascending or descending" ) valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=hparams["valid_csv"], replacements={"data_root": data_folder}, ) # We also sort the validation data so it is faster to validate valid_data = valid_data.filtered_sorted(sort_key="duration") test_datasets = {} for csv_file in hparams["test_csv"]: name = Path(csv_file).stem test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=csv_file, replacements={"data_root": data_folder} ) test_datasets[name] = test_datasets[name].filtered_sorted( sort_key="duration" ) datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()] # 2. Define audio pipeline: @sb.utils.data_pipeline.takes("wav") @sb.utils.data_pipeline.provides("sig") def audio_pipeline(wav): info = torchaudio.info(wav) sig = sb.dataio.dataio.read_audio(wav) resampled = torchaudio.transforms.Resample( info.sample_rate, hparams["sample_rate"], )(sig) return resampled sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline) label_encoder = sb.dataio.encoder.CTCTextEncoder() # 3. Define text pipeline: @sb.utils.data_pipeline.takes("wrd") @sb.utils.data_pipeline.provides( "wrd", "char_list", "tokens_list", "tokens" ) def text_pipeline(wrd): yield wrd char_list = list(wrd) yield char_list tokens_list = label_encoder.encode_sequence(char_list) yield tokens_list tokens = torch.LongTensor(tokens_list) yield tokens sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline) lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt") special_labels = { "blank_label": hparams["blank_index"], "unk_label": hparams["unk_index"] } label_encoder.load_or_create( path=lab_enc_file, from_didatasets=[train_data], output_key="char_list", special_labels=special_labels, sequence_input=True, ) # 4. Set output: sb.dataio.dataset.set_output_keys( datasets, ["id", "sig", "wrd", "char_list", "tokens"], ) return train_data, valid_data, test_datasets, label_encoder # Load hyperparameters file with command-line overrides hparams_file, run_opts, overrides = sb.parse_arguments(["train_semi.yaml"]) with open(hparams_file) as fin: hparams = load_hyperpyyaml(fin, overrides) # If --distributed_launch then # create ddp_group with the right communication protocol sb.utils.distributed.ddp_init_group(run_opts) # Create experiment directory sb.create_experiment_directory( experiment_directory=hparams["output_folder"], hyperparams_to_save=hparams_file, overrides=overrides, ) # Due to DDP, we do the preparation ONLY on the main python process # Defining tokenizer and loading it # Create the datasets objects as well as tokenization and encoding :-D label_encoder = sb.dataio.encoder.CTCTextEncoder() lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt") special_labels = { "blank_label": hparams["blank_index"], "unk_label": hparams["unk_index"] } label_encoder.load_or_create( path=lab_enc_file, from_didatasets=[[]], output_key="char_list", special_labels=special_labels, sequence_input=True, ) from pyctcdecode import build_ctcdecoder ind2lab = label_encoder.ind2lab print(ind2lab) labels = [ind2lab[x] for x in range(len(ind2lab))] labels = [""] + labels[1:-1] + ["1"] # Replace the token with a blank character, needed for PyCTCdecode print(labels) decoder = build_ctcdecoder( labels, kenlm_model_path=hparams["ngram_lm_path"], # .arpa or .bin alpha=0.5, # Default by KenLM beta=1.0, # Default by KenLM ) # Trainer initialization run_opts["device"] = "cpu" asr_brain = ASR( modules=hparams["modules"], hparams=hparams, run_opts=run_opts, checkpointer=hparams["checkpointer"], ) # Adding objects to trainer. asr_brain.tokenizer = label_encoder asr_brain.checkpointer.recover_if_possible(device="cpu") asr_brain.modules.eval() title = "Tunisian Speech Recognition" def treat_wav_file(file_mic, file_upload, asr=asr_brain, device="cpu"): if (file_mic is not None) and (file_upload is not None): warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" wav = file_mic elif (file_mic is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" elif file_mic is not None: wav = file_mic else: wav = file_upload info = torchaudio.info(wav) sr = info.sample_rate sig = sb.dataio.dataio.read_audio(wav) if len(sig.shape) > 1: sig = torch.mean(sig, dim=1) sig = torch.unsqueeze(sig, 0) tensor_wav = sig.to(device) resampled = torchaudio.functional.resample(tensor_wav, sr, 16000) sentence = asr.treat_wav(resampled) return sentence gr.Interface( title = title, fn=treat_wav_file, inputs=[gr.Audio(source="microphone", type='filepath', label = "record", optional = True), gr.Audio(source="upload", type='filepath', label="filein", optional=True)] ,outputs="text").launch()