File size: 6,601 Bytes
2798842
 
7d0aa8d
2798842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c576577
2798842
 
 
 
879dd6d
2798842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e8c022
2798842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python

import spaces
import gradio as gr

def create_demo(process):
    with gr.Blocks() as demo:
        gr.Markdown("## BRIA 2.2 ControlNet Canny")
        gr.HTML('''
          <p style="margin-bottom: 10px; font-size: 94%">
            This is a demo for ControlNet Canny that using
            <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone. 
            Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
          </p>
        ''')
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
                prompt = gr.Textbox(label="Prompt")
                negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
                num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
                controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
                seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
                run_button = gr.Button(value="Run")
            with gr.Column():
                result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
        inputs = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]

        run_button.click(
            fn=process,
            inputs=inputs,
            outputs=result_gallery,
            api_name="canny",
        )
    return demo


if __name__ == "__main__":
    from model import Model

    model = Model(task_name="Canny")
    demo = create_demo(model.process_canny)
    demo.queue().launch()







################################################################################################################################




# from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
# from diffusers.utils import load_image
# from PIL import Image
# import torch
# import numpy as np
# import cv2
# import gradio as gr
# from torchvision import transforms 

# controlnet = ControlNetModel.from_pretrained(
#     "briaai/BRIA-2.2-ControlNet-Canny",
#     torch_dtype=torch.float16
# ).to('cuda')

# pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
#     "briaai/BRIA-2.2",
#     controlnet=controlnet,
#     torch_dtype=torch.float16,
#     device_map='auto',
#     low_cpu_mem_usage=True,
#     offload_state_dict=True,
# ).to('cuda')
# pipe.scheduler = EulerAncestralDiscreteScheduler(
#     beta_start=0.00085,
#     beta_end=0.012,
#     beta_schedule="scaled_linear",
#     num_train_timesteps=1000,
#     steps_offset=1
# )
# # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
# pipe.enable_xformers_memory_efficient_attention()
# pipe.force_zeros_for_empty_prompt = False

# low_threshold = 100
# high_threshold = 200

# def resize_image(image):
#     image = image.convert('RGB')
#     current_size = image.size
#     if current_size[0] > current_size[1]:
#         center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
#     else:
#         center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
#     resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
#     return resized_image

# def get_canny_filter(image):
    
#     if not isinstance(image, np.ndarray):
#         image = np.array(image) 
        
#     image = cv2.Canny(image, low_threshold, high_threshold)
#     image = image[:, :, None]
#     image = np.concatenate([image, image, image], axis=2)
#     canny_image = Image.fromarray(image)
#     return canny_image

# def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
#     generator = torch.manual_seed(seed)
    
#     # resize input_image to 1024x1024
#     input_image = resize_image(input_image)
    
#     canny_image = get_canny_filter(input_image)
  
#     images = pipe(
#         prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
#         generator=generator,
#         ).images

#     return [canny_image,images[0]]
    
# block = gr.Blocks().queue()

# with block:
#     gr.Markdown("## BRIA 2.2 ControlNet Canny")
#     gr.HTML('''
#       <p style="margin-bottom: 10px; font-size: 94%">
#         This is a demo for ControlNet Canny that using
#         <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone. 
#         Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
#       </p>
#     ''')
#     with gr.Row():
#         with gr.Column():
#             input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
#             prompt = gr.Textbox(label="Prompt")
#             negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
#             num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
#             controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
#             seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
#             run_button = gr.Button(value="Run")
            
            
#         with gr.Column():
#             result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
#     ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
#     run_button.click(fn=process, inputs=ips, outputs=[result_gallery])

# block.launch(debug = True)