Spaces:
Running
on
Zero
Running
on
Zero
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers.utils import load_image | |
from PIL import Image | |
import torch | |
import numpy as np | |
import cv2 | |
import gradio as gr | |
# from huggingface_hub import login | |
# login() | |
controlnet_conditioning_scale = 0.5 # recommended for good generalization | |
controlnet = ControlNetModel.from_pretrained( | |
"diffusers/controlnet-canny-sdxl-1.0", # "briaai/ControlNet-Canny", | |
torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"briaai/BRIA-2.0", | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
) | |
pipe.enable_model_cpu_offload() | |
low_threshold = 100 | |
high_threshold = 200 | |
def get_canny_filter(image): | |
if not isinstance(image, np.ndarray): | |
image = np.array(image) | |
image = cv2.Canny(image, low_threshold, high_threshold) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
canny_image = Image.fromarray(image) | |
return canny_image | |
def process(input_image, prompt): | |
canny_image = get_canny_filter(input_image) | |
images = pipe( | |
prompt,image=canny_image, controlnet_conditioning_scale=controlnet_conditioning_scale, | |
).images | |
return [canny_image,images[0]] | |
block = gr.Blocks().queue() | |
with block: | |
gr.Markdown("## BRIA 2.0 ControlNet Canny") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
This is a demo for BRIA 2.0 ControlNet Canny, a fully legal and safe T2I model. | |
</p> | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(value="Run") | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid_cols=2, height='auto') | |
ips = [input_image, prompt] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
block.launch(debug = True) |