Spaces:
Running
on
Zero
Running
on
Zero
Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import gc
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import PIL.Image
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from diffusers import (
|
10 |
+
ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
|
11 |
+
)
|
12 |
+
|
13 |
+
from cv_utils import resize_image
|
14 |
+
from preprocessor import Preprocessor
|
15 |
+
from settings import MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES
|
16 |
+
|
17 |
+
CONTROLNET_MODEL_IDS = {
|
18 |
+
"Canny": "briaai/BRIA-2.2-ControlNet-Canny",
|
19 |
+
"Depth": "briaai/BRIA-2.2-ControlNet-Depth",
|
20 |
+
"Recoloring": "briaai/BRIA-2.2-ControlNet-Recoloring",
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
def download_all_controlnet_weights() -> None:
|
25 |
+
for model_id in CONTROLNET_MODEL_IDS.values():
|
26 |
+
ControlNetModel.from_pretrained(model_id)
|
27 |
+
|
28 |
+
|
29 |
+
class Model:
|
30 |
+
def __init__(self, base_model_id: str = "briaai/BRIA-2.2", task_name: str = "Canny"):
|
31 |
+
self.device = torch.device("cuda:0")
|
32 |
+
self.base_model_id = ""
|
33 |
+
self.task_name = ""
|
34 |
+
self.pipe = self.load_pipe(base_model_id, task_name)
|
35 |
+
self.preprocessor = Preprocessor()
|
36 |
+
|
37 |
+
def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline:
|
38 |
+
if (
|
39 |
+
base_model_id == self.base_model_id
|
40 |
+
and task_name == self.task_name
|
41 |
+
and hasattr(self, "pipe")
|
42 |
+
and self.pipe is not None
|
43 |
+
):
|
44 |
+
return self.pipe
|
45 |
+
model_id = CONTROLNET_MODEL_IDS[task_name]
|
46 |
+
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16).to('cuda')
|
47 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
48 |
+
base_model_id,
|
49 |
+
controlnet=controlnet,
|
50 |
+
torch_dtype=torch.float16,
|
51 |
+
device_map='auto',
|
52 |
+
low_cpu_mem_usage=True,
|
53 |
+
offload_state_dict=True,
|
54 |
+
).to('cuda')
|
55 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler(
|
56 |
+
beta_start=0.00085,
|
57 |
+
beta_end=0.012,
|
58 |
+
beta_schedule="scaled_linear",
|
59 |
+
num_train_timesteps=1000,
|
60 |
+
steps_offset=1
|
61 |
+
)
|
62 |
+
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
|
63 |
+
pipe.enable_xformers_memory_efficient_attention()
|
64 |
+
pipe.force_zeros_for_empty_prompt = False
|
65 |
+
|
66 |
+
torch.cuda.empty_cache()
|
67 |
+
gc.collect()
|
68 |
+
self.base_model_id = base_model_id
|
69 |
+
self.task_name = task_name
|
70 |
+
return pipe
|
71 |
+
|
72 |
+
def set_base_model(self, base_model_id: str) -> str:
|
73 |
+
if not base_model_id or base_model_id == self.base_model_id:
|
74 |
+
return self.base_model_id
|
75 |
+
del self.pipe
|
76 |
+
torch.cuda.empty_cache()
|
77 |
+
gc.collect()
|
78 |
+
try:
|
79 |
+
self.pipe = self.load_pipe(base_model_id, self.task_name)
|
80 |
+
except Exception:
|
81 |
+
self.pipe = self.load_pipe(self.base_model_id, self.task_name)
|
82 |
+
return self.base_model_id
|
83 |
+
|
84 |
+
def load_controlnet_weight(self, task_name: str) -> None:
|
85 |
+
if task_name == self.task_name:
|
86 |
+
return
|
87 |
+
if self.pipe is not None and hasattr(self.pipe, "controlnet"):
|
88 |
+
del self.pipe.controlnet
|
89 |
+
torch.cuda.empty_cache()
|
90 |
+
gc.collect()
|
91 |
+
model_id = CONTROLNET_MODEL_IDS[task_name]
|
92 |
+
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16)
|
93 |
+
controlnet.to(self.device)
|
94 |
+
torch.cuda.empty_cache()
|
95 |
+
gc.collect()
|
96 |
+
self.pipe.controlnet = controlnet
|
97 |
+
self.task_name = task_name
|
98 |
+
|
99 |
+
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
|
100 |
+
if not prompt:
|
101 |
+
prompt = additional_prompt
|
102 |
+
else:
|
103 |
+
prompt = f"{prompt}, {additional_prompt}"
|
104 |
+
return prompt
|
105 |
+
|
106 |
+
@torch.autocast("cuda")
|
107 |
+
def run_pipe(
|
108 |
+
self,
|
109 |
+
prompt: str,
|
110 |
+
negative_prompt: str,
|
111 |
+
control_image: PIL.Image.Image,
|
112 |
+
num_images: int,
|
113 |
+
num_steps: int,
|
114 |
+
controlnet_conditioning_scale: float,
|
115 |
+
seed: int,
|
116 |
+
) -> list[PIL.Image.Image]:
|
117 |
+
generator = torch.Generator().manual_seed(seed)
|
118 |
+
return self.pipe(
|
119 |
+
prompt=prompt,
|
120 |
+
negative_prompt=negative_prompt,
|
121 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
122 |
+
num_images_per_prompt=num_images,
|
123 |
+
num_inference_steps=num_steps,
|
124 |
+
generator=generator,
|
125 |
+
image=control_image,
|
126 |
+
).images
|
127 |
+
|
128 |
+
|
129 |
+
def resize_image(image):
|
130 |
+
image = image.convert('RGB')
|
131 |
+
current_size = image.size
|
132 |
+
if current_size[0] > current_size[1]:
|
133 |
+
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
|
134 |
+
else:
|
135 |
+
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
|
136 |
+
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
|
137 |
+
return resized_image
|
138 |
+
|
139 |
+
def get_canny_filter(image):
|
140 |
+
low_threshold = 100
|
141 |
+
high_threshold = 200
|
142 |
+
|
143 |
+
if not isinstance(image, np.ndarray):
|
144 |
+
image = np.array(image)
|
145 |
+
|
146 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
147 |
+
image = image[:, :, None]
|
148 |
+
image = np.concatenate([image, image, image], axis=2)
|
149 |
+
canny_image = Image.fromarray(image)
|
150 |
+
return canny_image
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
@torch.inference_mode()
|
155 |
+
def process_canny(
|
156 |
+
self,
|
157 |
+
image: np.ndarray,
|
158 |
+
prompt: str,
|
159 |
+
negative_prompt: str,
|
160 |
+
image_resolution: int,
|
161 |
+
num_steps: int,
|
162 |
+
controlnet_conditioning_scale: float,
|
163 |
+
seed: int,
|
164 |
+
) -> list[PIL.Image.Image]:
|
165 |
+
|
166 |
+
# resize input_image to 1024x1024
|
167 |
+
input_image = resize_image(image)
|
168 |
+
|
169 |
+
canny_image = get_canny_filter(input_image)
|
170 |
+
|
171 |
+
self.load_controlnet_weight("Canny")
|
172 |
+
results = self.run_pipe(
|
173 |
+
prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale)
|
174 |
+
)
|
175 |
+
return [control_image] + results
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
----------------------------------------------------------------------------
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
# from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
188 |
+
# from diffusers.utils import load_image
|
189 |
+
# from PIL import Image
|
190 |
+
# import torch
|
191 |
+
# import numpy as np
|
192 |
+
# import cv2
|
193 |
+
# import gradio as gr
|
194 |
+
# from torchvision import transforms
|
195 |
+
|
196 |
+
# controlnet = ControlNetModel.from_pretrained(
|
197 |
+
# "briaai/BRIA-2.2-ControlNet-Canny",
|
198 |
+
# torch_dtype=torch.float16
|
199 |
+
# ).to('cuda')
|
200 |
+
|
201 |
+
# pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
202 |
+
# "briaai/BRIA-2.2",
|
203 |
+
# controlnet=controlnet,
|
204 |
+
# torch_dtype=torch.float16,
|
205 |
+
# device_map='auto',
|
206 |
+
# low_cpu_mem_usage=True,
|
207 |
+
# offload_state_dict=True,
|
208 |
+
# ).to('cuda')
|
209 |
+
# pipe.scheduler = EulerAncestralDiscreteScheduler(
|
210 |
+
# beta_start=0.00085,
|
211 |
+
# beta_end=0.012,
|
212 |
+
# beta_schedule="scaled_linear",
|
213 |
+
# num_train_timesteps=1000,
|
214 |
+
# steps_offset=1
|
215 |
+
# )
|
216 |
+
# # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
|
217 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
218 |
+
# pipe.force_zeros_for_empty_prompt = False
|
219 |
+
|
220 |
+
# low_threshold = 100
|
221 |
+
# high_threshold = 200
|
222 |
+
|
223 |
+
# def resize_image(image):
|
224 |
+
# image = image.convert('RGB')
|
225 |
+
# current_size = image.size
|
226 |
+
# if current_size[0] > current_size[1]:
|
227 |
+
# center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
|
228 |
+
# else:
|
229 |
+
# center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
|
230 |
+
# resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
|
231 |
+
# return resized_image
|
232 |
+
|
233 |
+
# def get_canny_filter(image):
|
234 |
+
|
235 |
+
# if not isinstance(image, np.ndarray):
|
236 |
+
# image = np.array(image)
|
237 |
+
|
238 |
+
# image = cv2.Canny(image, low_threshold, high_threshold)
|
239 |
+
# image = image[:, :, None]
|
240 |
+
# image = np.concatenate([image, image, image], axis=2)
|
241 |
+
# canny_image = Image.fromarray(image)
|
242 |
+
# return canny_image
|
243 |
+
|
244 |
+
# def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
|
245 |
+
# generator = torch.manual_seed(seed)
|
246 |
+
|
247 |
+
# # resize input_image to 1024x1024
|
248 |
+
# input_image = resize_image(input_image)
|
249 |
+
|
250 |
+
# canny_image = get_canny_filter(input_image)
|
251 |
+
|
252 |
+
# images = pipe(
|
253 |
+
# prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
254 |
+
# generator=generator,
|
255 |
+
# ).images
|
256 |
+
|
257 |
+
# return [canny_image,images[0]]
|
258 |
+
|
259 |
+
# block = gr.Blocks().queue()
|
260 |
+
|
261 |
+
# with block:
|
262 |
+
# gr.Markdown("## BRIA 2.2 ControlNet Canny")
|
263 |
+
# gr.HTML('''
|
264 |
+
# <p style="margin-bottom: 10px; font-size: 94%">
|
265 |
+
# This is a demo for ControlNet Canny that using
|
266 |
+
# <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone.
|
267 |
+
# Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
|
268 |
+
# </p>
|
269 |
+
# ''')
|
270 |
+
# with gr.Row():
|
271 |
+
# with gr.Column():
|
272 |
+
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
|
273 |
+
# prompt = gr.Textbox(label="Prompt")
|
274 |
+
# negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
|
275 |
+
# num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
|
276 |
+
# controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
|
277 |
+
# seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
|
278 |
+
# run_button = gr.Button(value="Run")
|
279 |
+
|
280 |
+
|
281 |
+
# with gr.Column():
|
282 |
+
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
|
283 |
+
# ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
|
284 |
+
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
285 |
+
|
286 |
+
# block.launch(debug = True)
|