Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesresize to 1024x1024
conditioning scale to 1.0
app.py
CHANGED
@@ -5,13 +5,14 @@ import torch
|
|
5 |
import numpy as np
|
6 |
import cv2
|
7 |
import gradio as gr
|
|
|
8 |
# from huggingface_hub import login
|
9 |
# login()
|
10 |
|
11 |
-
controlnet_conditioning_scale = 0
|
12 |
|
13 |
controlnet = ControlNetModel.from_pretrained(
|
14 |
-
"briaai/ControlNet-Canny",
|
15 |
torch_dtype=torch.float16
|
16 |
)
|
17 |
|
@@ -25,6 +26,15 @@ pipe.enable_model_cpu_offload()
|
|
25 |
low_threshold = 100
|
26 |
high_threshold = 200
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def get_canny_filter(image):
|
29 |
|
30 |
if not isinstance(image, np.ndarray):
|
@@ -37,6 +47,9 @@ def get_canny_filter(image):
|
|
37 |
return canny_image
|
38 |
|
39 |
def process(input_image, prompt):
|
|
|
|
|
|
|
40 |
canny_image = get_canny_filter(input_image)
|
41 |
images = pipe(
|
42 |
prompt,image=canny_image, controlnet_conditioning_scale=controlnet_conditioning_scale,
|
|
|
5 |
import numpy as np
|
6 |
import cv2
|
7 |
import gradio as gr
|
8 |
+
from torchvision import transforms
|
9 |
# from huggingface_hub import login
|
10 |
# login()
|
11 |
|
12 |
+
controlnet_conditioning_scale = 1.0
|
13 |
|
14 |
controlnet = ControlNetModel.from_pretrained(
|
15 |
+
"briaai/ControlNet-Canny",
|
16 |
torch_dtype=torch.float16
|
17 |
)
|
18 |
|
|
|
26 |
low_threshold = 100
|
27 |
high_threshold = 200
|
28 |
|
29 |
+
def resize_image(image):
|
30 |
+
current_size = image.size
|
31 |
+
if current_size[0] > current_size[1]:
|
32 |
+
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
|
33 |
+
else:
|
34 |
+
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
|
35 |
+
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
|
36 |
+
return resized_image
|
37 |
+
|
38 |
def get_canny_filter(image):
|
39 |
|
40 |
if not isinstance(image, np.ndarray):
|
|
|
47 |
return canny_image
|
48 |
|
49 |
def process(input_image, prompt):
|
50 |
+
# resize input_image to 1024x1024
|
51 |
+
input_image = resize_image(input_image)
|
52 |
+
|
53 |
canny_image = get_canny_filter(input_image)
|
54 |
images = pipe(
|
55 |
prompt,image=canny_image, controlnet_conditioning_scale=controlnet_conditioning_scale,
|