bright1 commited on
Commit
88181da
1 Parent(s): 6dd80c8

Readded all files

Browse files
Files changed (9) hide show
  1. .gitattributes +34 -0
  2. .gitignore +2 -0
  3. README.md +12 -0
  4. app.py +134 -0
  5. full_pipeline.pkl +3 -0
  6. logistic_reg_class_model.pkl +3 -0
  7. requirements.txt +3 -0
  8. theme.py +3 -0
  9. utils.py +47 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ \venv
2
+ \gradio
README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Customer Churn App
3
+ emoji: 💻
4
+ colorFrom: indigo
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 3.29.0
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pickle
3
+ # import time
4
+ import pandas as pd
5
+ import numpy as np
6
+ from utils import create_new_columns, create_processed_dataframe
7
+
8
+
9
+ pipeline_pkl = "full_pipeline.pkl"
10
+ log_reg = "logistic_reg_class_model.pkl"
11
+
12
+ # hist_df = "history.csv"
13
+
14
+ # def check_csv(csv_file, data):
15
+ # if os.path.isfile(csv_file):
16
+ # data.to_csv(csv_file, mode='a', header=False, index=False, encoding='utf-8')
17
+ # else:
18
+ # history = data.copy()
19
+ # history.to_csv(csv_file, index=False)
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+ def tenure_values():
28
+ cols = ['0-2', '3-5', '6-8', '9-11', '12-14', '15-17', '18-20', '21-23', '24-26', '27-29', '30-32', '33-35', '36-38', '39-41', '42-44', '45-47', '48-50', '51-53', '54-56', '57-59', '60-62', '63-65', '66-68', '69-71', '72-74']
29
+ return cols
30
+
31
+ def predict_churn(gender, SeniorCitizen, Partner, Dependents, Tenure, PhoneService, MultipleLines, InternetService,
32
+ OnlineSecurity, OnlineBackup, DeviceProtection,TechSupport,StreamingTV, StreamingMovies,
33
+ Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges):
34
+
35
+ data = [gender, SeniorCitizen, Partner, Dependents, Tenure, PhoneService, MultipleLines, InternetService,
36
+ OnlineSecurity, OnlineBackup, DeviceProtection,TechSupport,StreamingTV, StreamingMovies,
37
+ Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges]
38
+
39
+ x = np.array([data])
40
+ dataframe = pd.DataFrame(x, columns=train_features)
41
+ dataframe = dataframe.astype({'MonthlyCharges': 'float', 'TotalCharges': 'float', 'tenure': 'float'})
42
+ dataframe_ = create_new_columns(dataframe)
43
+ try:
44
+ processed_data = pipeline.transform(dataframe_)
45
+ except Exception as e:
46
+ raise gr.Error('Kindly make sure to check/select all')
47
+ else:
48
+ # check_csv(hist_df, dataframe)
49
+ # history = pd.read_csv(hist_df)
50
+
51
+ processed_dataframe = create_processed_dataframe(processed_data, dataframe)
52
+ predictions = model.predict_proba(processed_dataframe)
53
+ return round(predictions[0][0], 3), round(predictions[0][1], 3)
54
+
55
+
56
+
57
+ theme = gr.themes.Default().set(body_background_fill="#0E1117",
58
+ background_fill_secondary="#FFFFFF",
59
+ background_fill_primary="#262730",
60
+ body_text_color="#FF4B4B",
61
+ checkbox_background_color='#FFFFFF',
62
+ button_secondary_background_fill="#FF4B4B")
63
+
64
+
65
+ def load_pickle(filename):
66
+ with open(filename, 'rb') as file:
67
+ data = pickle.load(file)
68
+ return data
69
+
70
+ pipeline = load_pickle(pipeline_pkl)
71
+ model = load_pickle(log_reg)
72
+
73
+ train_features = ['gender', 'SeniorCitizen', 'Partner', 'Dependents','tenure', 'PhoneService', 'MultipleLines', 'InternetService',
74
+ 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection','TechSupport','StreamingTV', 'StreamingMovies',
75
+ 'Contract', 'PaperlessBilling', 'PaymentMethod', 'MonthlyCharges', 'TotalCharges']
76
+
77
+
78
+ # theme = gr.themes.Base()
79
+ with gr.Blocks(theme=theme) as demo:
80
+ gr.HTML("""
81
+ <h1 style="color:white; text-align:center">Customer Churn Classification App</h1>
82
+ <h2 style="color:white;">Welcome Cherished User 👋 </h2>
83
+ <h4 style="color:white;">Start predicting customer churn.</h4>
84
+
85
+ """)
86
+ with gr.Row():
87
+ gender = gr.Dropdown(label='Gender', choices=['Female', 'Male'])
88
+ Contract = gr.Dropdown(label='Contract', choices=['Month-to-month', 'One year', 'Two year'])
89
+ InternetService = gr.Dropdown(label='Internet Service', choices=['DSL', 'Fiber optic', 'No'])
90
+
91
+ with gr.Accordion('Yes or no'):
92
+
93
+ with gr.Row():
94
+ OnlineSecurity = gr.Radio(label="Online Security", choices=["Yes", "No", "No internet service"])
95
+ OnlineBackup = gr.Radio(label="Online Backup", choices=["Yes", "No", "No internet service"])
96
+ DeviceProtection = gr.Radio(label="Device Protection", choices=["Yes", "No", "No internet service"])
97
+ TechSupport = gr.Radio(label="Tech Support", choices=["Yes", "No", "No internet service"])
98
+ StreamingTV = gr.Radio(label="TV Streaming", choices=["Yes", "No", "No internet service"])
99
+ StreamingMovies = gr.Radio(label="Movie Streaming", choices=["Yes", "No", "No internet service"])
100
+ with gr.Row():
101
+ SeniorCitizen = gr.Radio(label="Senior Citizen", choices=["Yes", "No"])
102
+ Partner = gr.Radio(label="Partner", choices=["Yes", "No"])
103
+ Dependents = gr.Radio(label="Dependents", choices=["Yes", "No"])
104
+ PaperlessBilling = gr.Radio(label="Paperless Billing", choices=["Yes", "No"])
105
+ PhoneService = gr.Radio(label="Phone Service", choices=["Yes", "No"])
106
+ MultipleLines = gr.Radio(label="Multiple Lines", choices=["No phone service", "Yes", "No"])
107
+
108
+ with gr.Row():
109
+ MonthlyCharges = gr.Number(label="Monthly Charges")
110
+ TotalCharges = gr.Number(label="Total Charges")
111
+ Tenure = gr.Number(label='Months of Tenure')
112
+ PaymentMethod = gr.Dropdown(label="Payment Method", choices=["Electronic check", "Mailed check", "Bank transfer (automatic)", "Credit card (automatic)"])
113
+
114
+ submit_button = gr.Button('Prediction')
115
+ # print(type([[122, 456]]))
116
+
117
+ with gr.Row():
118
+ with gr.Accordion('Churn Prediction'):
119
+ output1 = gr.Slider(maximum=1,
120
+ minimum=0,
121
+ value=0.0,
122
+ label='Yes')
123
+ output2 = gr.Slider(maximum=1,
124
+ minimum=0,
125
+ value=0.0,
126
+ label='No')
127
+ # with gr.Accordion('Input History'):
128
+ # output3 = gr.Dataframe()
129
+
130
+ submit_button.click(fn=predict_churn, inputs=[gender, SeniorCitizen, Partner, Dependents, Tenure, PhoneService, MultipleLines,
131
+ InternetService, OnlineSecurity, OnlineBackup, DeviceProtection,TechSupport,StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges], outputs=[output1, output2])
132
+
133
+
134
+ demo.launch(debug=True, server_port=7800)
full_pipeline.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8258008cf92ff5e5446c62b85547661f5139b8034dd3408cb61224b44fdf7c1b
3
+ size 3517
logistic_reg_class_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:909c3db0e63bc22cacd72f7bd76e53e978f8667b32123fb543ff66831b0e9d1a
3
+ size 1301
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ numpy==1.20.1
2
+ pandas==1.2.4
3
+ scikit-learn==0.24.1
theme.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ import gradio as gr
2
+
3
+ gr.themes.builder()
utils.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import pickle
4
+
5
+ # Define the name of the pickle file containing a pre-trained data preprocessing pipeline.
6
+ pipeline_pkl = "full_pipeline.pkl"
7
+
8
+ # Function to load data from a pickle file.
9
+ def load_pickle(filename):
10
+ with open(filename, 'rb') as file:
11
+ data = pickle.load(file)
12
+ return data
13
+
14
+ # Load the pre-processing pipeline from the pickle file.
15
+ preprocessor = load_pickle(pipeline_pkl)
16
+
17
+ # Function to create new columns in the training data.
18
+ def create_new_columns(train_data):
19
+ # Calculate 'Monthly Variations' column as the difference between 'TotalCharges' and the product of 'tenure' and 'MonthlyCharges'.
20
+ train_data['Monthly Variations'] = (train_data.loc[:, 'TotalCharges']) -((train_data.loc[:, 'tenure'] * train_data.loc[:, 'MonthlyCharges']))
21
+
22
+ # Define labels for 'tenure_group' based on a range of values.
23
+ labels =['{0}-{1}'.format(i, i+2) for i in range(0, 73, 3)]
24
+
25
+ # Create a 'tenure_group' column by binning 'tenure' values into the specified labels.
26
+ train_data['tenure_group'] = pd.cut(train_data['tenure'], bins=(range(0, 78, 3)), right=False, labels=labels)
27
+
28
+ # Drop the 'tenure' column from the DataFrame.
29
+ train_data.drop(columns=['tenure'], inplace=True)
30
+
31
+ return train_data
32
+
33
+ # Function to create a processed DataFrame from the processed data.
34
+ def create_processed_dataframe(processed_data, train_data):
35
+ # Select numerical columns from the training data.
36
+ train_num_cols=train_data.select_dtypes(exclude=['object', 'category']).columns
37
+
38
+ # Get feature names from the categorical encoder in the preprocessor.
39
+ cat_features = preprocessor.named_transformers_['categorical']['cat_encoder'].get_feature_names()
40
+
41
+ # Concatenate numerical and categorical feature names.
42
+ labels = np.concatenate([train_num_cols, cat_features])
43
+
44
+ # Create a DataFrame from the processed data with the specified column labels.
45
+ processed_dataframe = pd.DataFrame(processed_data.toarray(), columns=labels)
46
+
47
+ return processed_dataframe