bright1's picture
Fixed title
ff1f5c6
import streamlit as st
import pandas as pd
import numpy as np
from PIL import Image
from utils import run_sentiment_analysis, preprocess
from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification
import os
import time
# the two model trained
dstbt_model_path = "bright1/fine-tuned-distilbert-base-uncased" # distilbert model
rbta_model_path = "bright1/fine-tuned-twitter-Roberta-base-sentiment" # roberta model
# function to load model
def load_model_components(model_path):
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
return model, tokenizer, config
# configure page
st.set_page_config(
page_title="Tweet Analyzer",
page_icon="πŸ€–",
initial_sidebar_state="expanded",
menu_items={
'About': "# This is a Sentiment Analysis App. Call it the Covid Vaccine tweet Analyzer!"
}
)
# Define custom CSS style
# Apply custom CSS
# st.markdown("""<style>
# [data-testid="stAppViewContainer"] {
# background-image: url("app\download.png");
# background-attachment: fixed;
# background-size: cover
# }
# </style>""", unsafe_allow_html=True)
# create a sidebar and contents
st.sidebar.markdown("""
## Demo App
This app analyzes your tweets on covid vaccines and classifies them us Neutral, Negative or Positive
""")
# create a three column layout
model_type = st.sidebar.selectbox(label=':red[Select your model]', options=('distilbert', 'roberta'))
st.markdown("""<style>
[data-testid="stMarkdownContainer"] {
font-size: 30px;
font-weight: 800;
}
</style>""", unsafe_allow_html=True)
# set a default model path
model_path = dstbt_model_path
if model_type == 'roberta':
model_path = rbta_model_path
# create app interface
my_expander = st.container()
# st.sidebar.selectbox('Menu', ['About', 'Model'])
with my_expander:
# center text in the container
st.markdown("""
<style>
h1 {
text-align: center;
}
</style>
""", unsafe_allow_html=True)
#set title for the app
st.title(':green[Covid-19 Vaccine Tweets Analyzer]')
# load model components
model, tokenizer, config = load_model_components(model_path)
# size columns
col1, col2, col3 = st.columns((1.6, 1,0.3))
# col2.markdown("""
# <p style= font-color:red>
# Results from Analyzer
# </p>
# """,unsafe_allow_html=True)
st.markdown("""
<style>
p {
font-color: blue;
}
</style>
""", unsafe_allow_html=True)
# set textarea to receive tweet
tweet = col1.text_area('Tweets to analyze',height=200, max_chars=520, placeholder='Write your Tweets here')
# divide container into columns
colA, colb, colc, cold = st.columns(4)
clear_button = colA.button(label='Clear', type='secondary', use_container_width=True)
# create a submit button
submit_button = colb.button(label='Submit', type='primary', use_container_width=True)
# set an empty container for the results
empty_container = col2.container() # for progress bars
empty_container.text("Results from Analyzer")
empty_container2 = col3.container() # for scores
empty_container2.text('Scores')
text = preprocess(tweet)
# run the analysis on the tweet
results = run_sentiment_analysis(text=text, model=model, tokenizer=tokenizer)
# when the tweet is submitted
if submit_button:
# print a success message
success_message = st.success('Success', icon="βœ…")
time.sleep(3)
success_message.empty()
# create am expander to contain the results
with empty_container:
neutral = st.progress(value=results['Neutral'], text='Neutral',)
negative = st.progress(value=results['Negative'], text='Negative')
positive = st.progress(value=results['Positive'], text='Positive')
with empty_container2:
st.markdown(
"""
<style>
[data-testid="stMetricValue"] {
font-size: 20px;
}
.st-ed {
background-color: #FF4B4B;
}
.st-ee {
background-color: #1B9C85;
}
.st-eb {
background-color: #FFD95A;
}
</style>
""",
unsafe_allow_html=True,
)
# class=""
# dispay the scores with metric widget
neutral_score = st.metric(label='Score', value=round(results['Neutral'], 4), label_visibility='collapsed')
negative_score = st.metric(label='Score', value=round(results['Negative'], 4), label_visibility='collapsed')
positive_score = st.metric(label='Score', value=round(results['Positive'], 4), label_visibility='collapsed')
# interpret_button = col2.button(label='Interpret',type='secondary', use_container_width=True)
if clear_button:
tweet = ""