Spaces:
Sleeping
Sleeping
import numpy as np | |
import pandas as pd | |
from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification | |
from scipy.special import softmax | |
import os | |
def check_csv(csv_file, data): | |
if os.path.isfile(csv_file): | |
data.to_csv(csv_file, mode='a', header=False, index=False, encoding='utf-8') | |
else: | |
history = data.copy() | |
history.to_csv(csv_file, index=False) | |
#Preprocess text | |
def preprocess(text): | |
new_text = [] | |
for t in text.split(" "): | |
t = "@user" if t.startswith("@") and len(t) > 1 else t | |
t = "http" if t.startswith("http") else t | |
print(t) | |
new_text.append(t) | |
print(new_text) | |
return " ".join(new_text) | |
#Process the input and return prediction | |
def run_sentiment_analysis(text, tokenizer, model): | |
# save_text = {'tweet': text} | |
encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models | |
output = model(**encoded_input) | |
scores_ = output[0][0].detach().numpy() | |
scores_ = softmax(scores_) | |
# Format output dict of scores | |
labels = ["Negative", "Neutral", "Positive"] | |
scores = {l:float(s) for (l,s) in zip(labels, scores_) } | |
# save_text.update(scores) | |
# user_data = {key: [value] for key,value in save_text.items()} | |
# data = pd.DataFrame(user_data,) | |
# check_csv('history.csv', data) | |
# hist_df = pd.read_csv('history.csv') | |
return scores | |