Spaces:
Sleeping
Sleeping
Removed all files from git
Browse files- .gitattributes +0 -34
- Dockerfile +0 -11
- README.md +0 -10
- app.py +0 -104
- requirements.txt +0 -14
- utils.py +0 -54
.gitattributes
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dockerfile
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
FROM python:3.9
|
2 |
-
|
3 |
-
WORKDIR /code
|
4 |
-
|
5 |
-
COPY ./requirements.txt /code/requirements.txt
|
6 |
-
|
7 |
-
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
-
|
9 |
-
COPY . .
|
10 |
-
|
11 |
-
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: My Second Docker App
|
3 |
-
emoji: 👁
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: indigo
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
---
|
9 |
-
|
10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
DELETED
@@ -1,104 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
# from scipy.special import softmax
|
5 |
-
# import os
|
6 |
-
from utils import run_sentiment_analysis, preprocess
|
7 |
-
from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification
|
8 |
-
import os
|
9 |
-
import time
|
10 |
-
|
11 |
-
# Requirements
|
12 |
-
model_path = "bright1/fine-tuned-distilbert-base-uncased"
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
14 |
-
config = AutoConfig.from_pretrained(model_path)
|
15 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
16 |
-
|
17 |
-
# dark_theme = set_theme()
|
18 |
-
|
19 |
-
|
20 |
-
st.set_page_config(
|
21 |
-
page_title="Tweet Analyzer",
|
22 |
-
page_icon="🤖",
|
23 |
-
initial_sidebar_state="expanded",
|
24 |
-
menu_items={
|
25 |
-
'About': "# This is a header. This is an *extremely* cool app!"
|
26 |
-
}
|
27 |
-
)
|
28 |
-
|
29 |
-
|
30 |
-
my_expander = st.container()
|
31 |
-
|
32 |
-
|
33 |
-
# st.sidebar.selectbox('Menu', ['About', 'Model'])
|
34 |
-
with my_expander:
|
35 |
-
|
36 |
-
st.markdown("""
|
37 |
-
<style>
|
38 |
-
h1 {
|
39 |
-
text-align: center;
|
40 |
-
}
|
41 |
-
</style>
|
42 |
-
""", unsafe_allow_html=True)
|
43 |
-
st.title(':green[Covid-19 Vaccines Tweets Analyzer]')
|
44 |
-
st.sidebar.markdown("""
|
45 |
-
## Demo App
|
46 |
-
|
47 |
-
This app analyzes your tweets on covid vaccines and classifies them us Neutral, Negative or Positive
|
48 |
-
""")
|
49 |
-
# my_expander.write('Container')
|
50 |
-
# create a three column layout
|
51 |
-
|
52 |
-
col1, col2, col3 = st.columns((1.6, 1,0.3))
|
53 |
-
# col2.markdown("""
|
54 |
-
# <p style= font-color:red>
|
55 |
-
# Results from Analyzer
|
56 |
-
# </p>
|
57 |
-
# """,unsafe_allow_html=True)
|
58 |
-
st.markdown("""
|
59 |
-
<style>
|
60 |
-
p {
|
61 |
-
font-color: blue;
|
62 |
-
}
|
63 |
-
</style>
|
64 |
-
""", unsafe_allow_html=True)
|
65 |
-
tweet = col1.text_area('Tweets to analyze',height=200, max_chars=520, placeholder='Write your Tweets here')
|
66 |
-
colA, colb, colc, cold = st.columns(4)
|
67 |
-
clear_button = colA.button(label='Clear', type='secondary', use_container_width=True)
|
68 |
-
submit_button = colb.button(label='Submit', type='primary', use_container_width=True)
|
69 |
-
empty_container = col2.container()
|
70 |
-
empty_container.text("Results from Analyzer")
|
71 |
-
empty_container2 = col3.container()
|
72 |
-
empty_container2.text('Scores')
|
73 |
-
text = preprocess(tweet)
|
74 |
-
results = run_sentiment_analysis(text=text, model=model, tokenizer=tokenizer)
|
75 |
-
if submit_button:
|
76 |
-
success_message = st.success('Success', icon="✅")
|
77 |
-
|
78 |
-
with empty_container:
|
79 |
-
|
80 |
-
neutral = st.progress(value=results['Neutral'], text='Neutral',)
|
81 |
-
negative = st.progress(value=results['Negative'], text='Negative')
|
82 |
-
positive = st.progress(value=results['Positive'], text='Positive')
|
83 |
-
with empty_container2:
|
84 |
-
st.markdown(
|
85 |
-
"""
|
86 |
-
<style>
|
87 |
-
[data-testid="stMetricValue"] {
|
88 |
-
font-size: 20px;
|
89 |
-
}
|
90 |
-
</style>
|
91 |
-
""",
|
92 |
-
unsafe_allow_html=True,
|
93 |
-
)
|
94 |
-
neutral_score = st.metric(label='Score', value=round(results['Neutral'], 4), label_visibility='collapsed')
|
95 |
-
negative_score = st.metric(label='Score', value=round(results['Negative'], 4), label_visibility='collapsed')
|
96 |
-
positive_score = st.metric(label='Score', value=round(results['Positive'], 4), label_visibility='collapsed')
|
97 |
-
time.sleep(5)
|
98 |
-
success_message.empty()
|
99 |
-
interpret_button = col2.button(label='Interpret',type='secondary', use_container_width=True)
|
100 |
-
|
101 |
-
|
102 |
-
# st.help()
|
103 |
-
# create a date input to receive date
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
streamlit==1.22.0
|
2 |
-
nltk==3.8.1
|
3 |
-
torch==2.0.0
|
4 |
-
datasets==2.12.0
|
5 |
-
numpy==1.22.4
|
6 |
-
pandas==1.5.3
|
7 |
-
session_info==1.0.0
|
8 |
-
scikit-learn==1.2.2
|
9 |
-
transformers==4.28.1
|
10 |
-
IPython==7.34.0
|
11 |
-
jupyter_client==6.1.12
|
12 |
-
jupyter_core==5.3.0
|
13 |
-
notebook==6.4.8
|
14 |
-
uvicorn[standard]==0.17.*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import pandas as pd
|
3 |
-
from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification
|
4 |
-
from scipy.special import softmax
|
5 |
-
import os
|
6 |
-
|
7 |
-
# Requirements
|
8 |
-
# model_path = "bright1/fine-tuned-distilbert-base-uncased"
|
9 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_path)
|
10 |
-
# config = AutoConfig.from_pretrained(model_path)
|
11 |
-
# model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# def check_csv(csv_file, data):
|
16 |
-
# if os.path.isfile(csv_file):
|
17 |
-
# data.to_csv(csv_file, mode='a', header=False, index=False, encoding='utf-8')
|
18 |
-
# else:
|
19 |
-
# history = data.copy()
|
20 |
-
# history.to_csv(csv_file, index=False)
|
21 |
-
|
22 |
-
#Preprocess text
|
23 |
-
def preprocess(text):
|
24 |
-
new_text = []
|
25 |
-
for t in text.split(" "):
|
26 |
-
t = "@user" if t.startswith("@") and len(t) > 1 else t
|
27 |
-
t = "http" if t.startswith("http") else t
|
28 |
-
print(t)
|
29 |
-
new_text.append(t)
|
30 |
-
print(new_text)
|
31 |
-
|
32 |
-
return " ".join(new_text)
|
33 |
-
|
34 |
-
#Process the input and return prediction
|
35 |
-
def run_sentiment_analysis(text, tokenizer, model):
|
36 |
-
# save_text = {'tweet': text}
|
37 |
-
encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models
|
38 |
-
output = model(**encoded_input)
|
39 |
-
scores_ = output[0][0].detach().numpy()
|
40 |
-
scores_ = softmax(scores_)
|
41 |
-
|
42 |
-
# Format output dict of scores
|
43 |
-
labels = ["Negative", "Neutral", "Positive"]
|
44 |
-
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
45 |
-
# save_text.update(scores)
|
46 |
-
# user_data = {key: [value] for key,value in save_text.items()}
|
47 |
-
# data = pd.DataFrame(user_data,)
|
48 |
-
# check_csv('history.csv', data)
|
49 |
-
# hist_df = pd.read_csv('history.csv')
|
50 |
-
return scores
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|