Added files
Browse files- Air_Draw_RGB.py +161 -0
- palette.jpg +0 -0
- palette_small.jpg +0 -0
Air_Draw_RGB.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import mediapipe as mp
|
5 |
+
import time
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
DOMINANT_HAND = "Right"
|
9 |
+
|
10 |
+
width, height = 1280, 720
|
11 |
+
width_, height_, = 256, 144
|
12 |
+
|
13 |
+
|
14 |
+
def find_hands(brain, img):
|
15 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # opencv image is in BGR form but mp is trained with RGB
|
16 |
+
results = brain.process(img_rgb) # process finds the hands and outputs classification and 21 landmarks for each hand
|
17 |
+
all_hands = [] # initializing array to hold the dictionary for the hands
|
18 |
+
h, w, _ = img.shape # get height and width of image for scaling
|
19 |
+
if results.multi_hand_landmarks:
|
20 |
+
for hand_type, hand_lms in zip(results.multi_handedness, results.multi_hand_landmarks): # elegant solution for mp list object traversal
|
21 |
+
hand = {} # initializing dict for each hand
|
22 |
+
lm_list = [] # landmarks array for all 21 point of the hand
|
23 |
+
for lm in hand_lms.landmark:
|
24 |
+
px, py, pz = int(lm.x * w), int(lm.y * h), int(lm.z * w) # scaling landmark points to image size for frame coordinates
|
25 |
+
lm_list.append([px, py, pz])
|
26 |
+
|
27 |
+
hand["lm_list"] = lm_list # add "lm_list" key for all landmark points of the hand
|
28 |
+
hand["type"] = hand_type.classification[0].label # adds the label (left/right) for the hand
|
29 |
+
all_hands.append(hand) # appends the dict
|
30 |
+
return all_hands
|
31 |
+
|
32 |
+
|
33 |
+
def is_drawing(index, thumb): # proximity function with arbitrary threshold
|
34 |
+
npindex = np.array((index[0], index[1]))
|
35 |
+
npthumb = np.array((thumb[0], thumb[1]))
|
36 |
+
if np.linalg.norm(npindex - npthumb) < 30:
|
37 |
+
return True
|
38 |
+
else:
|
39 |
+
return False
|
40 |
+
|
41 |
+
|
42 |
+
def save(landmarks): # brute force finger orientation checking
|
43 |
+
if landmarks[8][1] < landmarks[6][1]:
|
44 |
+
if landmarks[12][1] < landmarks[10][1]:
|
45 |
+
if landmarks[16][1] < landmarks[14][1]:
|
46 |
+
if landmarks[20][1] < landmarks[18][1]:
|
47 |
+
return True
|
48 |
+
else:
|
49 |
+
return False
|
50 |
+
|
51 |
+
def clear(landmarks): # brute force finger orientation checking
|
52 |
+
if landmarks[4][1] < landmarks[3][1] < landmarks[2][1] < landmarks[8][1]:
|
53 |
+
return True
|
54 |
+
else:
|
55 |
+
return False
|
56 |
+
|
57 |
+
drawing_flag = False
|
58 |
+
sleepy_time = time.time()
|
59 |
+
|
60 |
+
if __name__ == '__main__':
|
61 |
+
cam = cv2.VideoCapture(0)
|
62 |
+
cam.set(3, width)
|
63 |
+
cam.set(4, height)
|
64 |
+
|
65 |
+
detector = mp.solutions.hands.Hands(min_detection_confidence=0.8) # initialize mp model
|
66 |
+
# paper = np.zeros((width, height, 4), np.uint8)
|
67 |
+
paper = np.zeros((height, width, 3), dtype=np.uint8) # create blank page
|
68 |
+
paper.fill(255)
|
69 |
+
|
70 |
+
past_holder = () # coordinates holder
|
71 |
+
palette = cv2.imread('palette.jpg')
|
72 |
+
|
73 |
+
output_frames = []
|
74 |
+
page_num = 0
|
75 |
+
# runny = 1
|
76 |
+
color = (0, 0, 0)
|
77 |
+
while True:
|
78 |
+
# runny -= 1
|
79 |
+
x, rgb_image = cam.read()
|
80 |
+
rgb_image_f = cv2.flip(np.asanyarray(rgb_image), 1)
|
81 |
+
|
82 |
+
hands = find_hands(detector, rgb_image_f)
|
83 |
+
|
84 |
+
try:
|
85 |
+
if hands:
|
86 |
+
hand1 = hands[0] if hands[0]["type"] == DOMINANT_HAND else hands[1]
|
87 |
+
lm_list1 = hand1["lm_list"] # List of 21 Landmarks
|
88 |
+
handedness = hand1["type"]
|
89 |
+
|
90 |
+
if handedness == DOMINANT_HAND:
|
91 |
+
idx_coords = lm_list1[8][0], lm_list1[8][1] # 0 is width (bigger)
|
92 |
+
# print(idx_coords)
|
93 |
+
cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED)
|
94 |
+
|
95 |
+
if idx_coords[1] < 72: # brute force but should be extremely marginally faster lol
|
96 |
+
if idx_coords[0] < 142: # red
|
97 |
+
color = (0, 0, 255)
|
98 |
+
if 142 < idx_coords[0] < 285: # orange
|
99 |
+
color = (0, 115, 255)
|
100 |
+
if 285 < idx_coords[0] < 426: # yellow
|
101 |
+
color = (0, 229, 255)
|
102 |
+
if 426 < idx_coords[0] < 569: # green
|
103 |
+
color = (0, 195, 88)
|
104 |
+
if 569 < idx_coords[0] < 711: # blue
|
105 |
+
color = (195, 85, 0)
|
106 |
+
if 711 < idx_coords[0] < 853: # indigo
|
107 |
+
color = (195, 0, 68)
|
108 |
+
if 853 < idx_coords[0] < 996: # violet
|
109 |
+
color = (195, 0, 143)
|
110 |
+
if 996 < idx_coords[0] < 1137: # black
|
111 |
+
color = (0, 0, 0)
|
112 |
+
if 1137 < idx_coords[0]: # white / eraser
|
113 |
+
color = (255, 255, 255)
|
114 |
+
|
115 |
+
if len(past_holder) and drawing_flag: # start drawing
|
116 |
+
cv2.line(paper, past_holder, idx_coords, color, 5)
|
117 |
+
cv2.line(rgb_image_f, past_holder, idx_coords, color, 5)
|
118 |
+
# paper[idx_coords[0]][idx_coords[1]][0] = 255
|
119 |
+
# paper[idx_coords[0]][idx_coords[1]][3] = 255
|
120 |
+
cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED)
|
121 |
+
|
122 |
+
if save(lm_list1) and time.time() - sleepy_time > 3: # save page, 3 secs arbitrary, just to not iterate every loop iteration
|
123 |
+
paper[0:height_, w - width_: w] = 255
|
124 |
+
paper = cv2.cvtColor(paper, cv2.COLOR_BGR2RGB)
|
125 |
+
im = Image.fromarray(paper)
|
126 |
+
im.save("paper%s.png" % page_num)
|
127 |
+
print("saved")
|
128 |
+
sleepy_time = time.time()
|
129 |
+
paper = cv2.cvtColor(paper, cv2.COLOR_RGB2BGR)
|
130 |
+
page_num += 1
|
131 |
+
|
132 |
+
if clear(lm_list1) and time.time() - sleepy_time > 3: # clear page
|
133 |
+
paper = np.zeros((height, width, 3), dtype=np.uint8)
|
134 |
+
paper.fill(255)
|
135 |
+
print("page cleared")
|
136 |
+
sleepy_time = time.time()
|
137 |
+
|
138 |
+
past_holder = idx_coords
|
139 |
+
|
140 |
+
if is_drawing(idx_coords, lm_list1[4]): # 4 is thumb for intuitive "hold pen" to draw
|
141 |
+
drawing_flag = True
|
142 |
+
else:
|
143 |
+
drawing_flag = False
|
144 |
+
|
145 |
+
except:
|
146 |
+
pass
|
147 |
+
|
148 |
+
finally:
|
149 |
+
rgb_image_f[0:72, ] = palette
|
150 |
+
presenter = cv2.resize(rgb_image_f, (width_, height_))
|
151 |
+
h, w, _ = rgb_image_f.shape
|
152 |
+
paper[0:height_, w - width_: w] = presenter
|
153 |
+
cv2.imshow("Image", rgb_image_f)
|
154 |
+
cv2.imshow("paper", paper)
|
155 |
+
key = cv2.waitKey(1)
|
156 |
+
if key & 0xFF == ord('q') or key == 27: # Press esc or 'q' to close the image window
|
157 |
+
break
|
158 |
+
output_frames.append(paper)
|
159 |
+
|
160 |
+
|
161 |
+
print("output: ", type(output_frames))
|
palette.jpg
ADDED
palette_small.jpg
ADDED