brogelio commited on
Commit
203ddd6
1 Parent(s): d59fd7c

Added files

Browse files
Files changed (3) hide show
  1. Air_Draw_RGB.py +161 -0
  2. palette.jpg +0 -0
  3. palette_small.jpg +0 -0
Air_Draw_RGB.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ from PIL import Image
4
+ import mediapipe as mp
5
+ import time
6
+ import gradio as gr
7
+
8
+ DOMINANT_HAND = "Right"
9
+
10
+ width, height = 1280, 720
11
+ width_, height_, = 256, 144
12
+
13
+
14
+ def find_hands(brain, img):
15
+ img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # opencv image is in BGR form but mp is trained with RGB
16
+ results = brain.process(img_rgb) # process finds the hands and outputs classification and 21 landmarks for each hand
17
+ all_hands = [] # initializing array to hold the dictionary for the hands
18
+ h, w, _ = img.shape # get height and width of image for scaling
19
+ if results.multi_hand_landmarks:
20
+ for hand_type, hand_lms in zip(results.multi_handedness, results.multi_hand_landmarks): # elegant solution for mp list object traversal
21
+ hand = {} # initializing dict for each hand
22
+ lm_list = [] # landmarks array for all 21 point of the hand
23
+ for lm in hand_lms.landmark:
24
+ px, py, pz = int(lm.x * w), int(lm.y * h), int(lm.z * w) # scaling landmark points to image size for frame coordinates
25
+ lm_list.append([px, py, pz])
26
+
27
+ hand["lm_list"] = lm_list # add "lm_list" key for all landmark points of the hand
28
+ hand["type"] = hand_type.classification[0].label # adds the label (left/right) for the hand
29
+ all_hands.append(hand) # appends the dict
30
+ return all_hands
31
+
32
+
33
+ def is_drawing(index, thumb): # proximity function with arbitrary threshold
34
+ npindex = np.array((index[0], index[1]))
35
+ npthumb = np.array((thumb[0], thumb[1]))
36
+ if np.linalg.norm(npindex - npthumb) < 30:
37
+ return True
38
+ else:
39
+ return False
40
+
41
+
42
+ def save(landmarks): # brute force finger orientation checking
43
+ if landmarks[8][1] < landmarks[6][1]:
44
+ if landmarks[12][1] < landmarks[10][1]:
45
+ if landmarks[16][1] < landmarks[14][1]:
46
+ if landmarks[20][1] < landmarks[18][1]:
47
+ return True
48
+ else:
49
+ return False
50
+
51
+ def clear(landmarks): # brute force finger orientation checking
52
+ if landmarks[4][1] < landmarks[3][1] < landmarks[2][1] < landmarks[8][1]:
53
+ return True
54
+ else:
55
+ return False
56
+
57
+ drawing_flag = False
58
+ sleepy_time = time.time()
59
+
60
+ if __name__ == '__main__':
61
+ cam = cv2.VideoCapture(0)
62
+ cam.set(3, width)
63
+ cam.set(4, height)
64
+
65
+ detector = mp.solutions.hands.Hands(min_detection_confidence=0.8) # initialize mp model
66
+ # paper = np.zeros((width, height, 4), np.uint8)
67
+ paper = np.zeros((height, width, 3), dtype=np.uint8) # create blank page
68
+ paper.fill(255)
69
+
70
+ past_holder = () # coordinates holder
71
+ palette = cv2.imread('palette.jpg')
72
+
73
+ output_frames = []
74
+ page_num = 0
75
+ # runny = 1
76
+ color = (0, 0, 0)
77
+ while True:
78
+ # runny -= 1
79
+ x, rgb_image = cam.read()
80
+ rgb_image_f = cv2.flip(np.asanyarray(rgb_image), 1)
81
+
82
+ hands = find_hands(detector, rgb_image_f)
83
+
84
+ try:
85
+ if hands:
86
+ hand1 = hands[0] if hands[0]["type"] == DOMINANT_HAND else hands[1]
87
+ lm_list1 = hand1["lm_list"] # List of 21 Landmarks
88
+ handedness = hand1["type"]
89
+
90
+ if handedness == DOMINANT_HAND:
91
+ idx_coords = lm_list1[8][0], lm_list1[8][1] # 0 is width (bigger)
92
+ # print(idx_coords)
93
+ cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED)
94
+
95
+ if idx_coords[1] < 72: # brute force but should be extremely marginally faster lol
96
+ if idx_coords[0] < 142: # red
97
+ color = (0, 0, 255)
98
+ if 142 < idx_coords[0] < 285: # orange
99
+ color = (0, 115, 255)
100
+ if 285 < idx_coords[0] < 426: # yellow
101
+ color = (0, 229, 255)
102
+ if 426 < idx_coords[0] < 569: # green
103
+ color = (0, 195, 88)
104
+ if 569 < idx_coords[0] < 711: # blue
105
+ color = (195, 85, 0)
106
+ if 711 < idx_coords[0] < 853: # indigo
107
+ color = (195, 0, 68)
108
+ if 853 < idx_coords[0] < 996: # violet
109
+ color = (195, 0, 143)
110
+ if 996 < idx_coords[0] < 1137: # black
111
+ color = (0, 0, 0)
112
+ if 1137 < idx_coords[0]: # white / eraser
113
+ color = (255, 255, 255)
114
+
115
+ if len(past_holder) and drawing_flag: # start drawing
116
+ cv2.line(paper, past_holder, idx_coords, color, 5)
117
+ cv2.line(rgb_image_f, past_holder, idx_coords, color, 5)
118
+ # paper[idx_coords[0]][idx_coords[1]][0] = 255
119
+ # paper[idx_coords[0]][idx_coords[1]][3] = 255
120
+ cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED)
121
+
122
+ if save(lm_list1) and time.time() - sleepy_time > 3: # save page, 3 secs arbitrary, just to not iterate every loop iteration
123
+ paper[0:height_, w - width_: w] = 255
124
+ paper = cv2.cvtColor(paper, cv2.COLOR_BGR2RGB)
125
+ im = Image.fromarray(paper)
126
+ im.save("paper%s.png" % page_num)
127
+ print("saved")
128
+ sleepy_time = time.time()
129
+ paper = cv2.cvtColor(paper, cv2.COLOR_RGB2BGR)
130
+ page_num += 1
131
+
132
+ if clear(lm_list1) and time.time() - sleepy_time > 3: # clear page
133
+ paper = np.zeros((height, width, 3), dtype=np.uint8)
134
+ paper.fill(255)
135
+ print("page cleared")
136
+ sleepy_time = time.time()
137
+
138
+ past_holder = idx_coords
139
+
140
+ if is_drawing(idx_coords, lm_list1[4]): # 4 is thumb for intuitive "hold pen" to draw
141
+ drawing_flag = True
142
+ else:
143
+ drawing_flag = False
144
+
145
+ except:
146
+ pass
147
+
148
+ finally:
149
+ rgb_image_f[0:72, ] = palette
150
+ presenter = cv2.resize(rgb_image_f, (width_, height_))
151
+ h, w, _ = rgb_image_f.shape
152
+ paper[0:height_, w - width_: w] = presenter
153
+ cv2.imshow("Image", rgb_image_f)
154
+ cv2.imshow("paper", paper)
155
+ key = cv2.waitKey(1)
156
+ if key & 0xFF == ord('q') or key == 27: # Press esc or 'q' to close the image window
157
+ break
158
+ output_frames.append(paper)
159
+
160
+
161
+ print("output: ", type(output_frames))
palette.jpg ADDED
palette_small.jpg ADDED