massa_qa / app.py
bruno16's picture
Update app.py
f2905eb verified
"""A Simple chatbot that uses the LangChain and Gradio UI to answer questions about wandb documentation."""
import os
from types import SimpleNamespace
import gradio as gr
import wandb
from chain import get_answer, load_chain, load_vector_store
from config import default_config
class Chat:
"""A chatbot interface that persists the vectorstore and chain between calls."""
def __init__(
self,
config: SimpleNamespace,
):
"""Initialize the chatbot.
Args:
config (SimpleNamespace): The configuration.
"""
self.config = config
wandb_key = os.environ["WANDB_KEY"]
wandb.login(key=wandb_key)
##wandb.login(key="a03aXXXXXXXXXXXX94169985957d")
self.wandb_run = wandb.init(
project=self.config.project,
entity=self.config.entity,
job_type=self.config.job_type,
config=self.config,
settings=wandb.Settings(start_method="thread")
)
self.vector_store = None
self.chain = None
def __call__(
self,
question: str,
history: list[tuple[str, str]] | None = None,
openai_api_key: str = None,
):
"""Answer a question about MASSA documentation using the LangChain QA chain and vector store retriever.
Args:
question (str): The question to answer.
history (list[tuple[str, str]] | None, optional): The chat history. Defaults to None.
openai_api_key (str, optional): The OpenAI API key. Defaults to None.
Returns:
list[tuple[str, str]], list[tuple[str, str]]: The chat history before and after the question is answered.
"""
if openai_api_key is not None:
openai_key = openai_api_key
elif os.environ["OPENAI_API_KEY"]:
openai_key = os.environ["OPENAI_API_KEY"]
else:
raise ValueError(
"Please provide your OpenAI API key as an argument or set the OPENAI_API_KEY environment variable"
)
if self.vector_store is None:
self.vector_store = load_vector_store(
wandb_run=self.wandb_run, openai_api_key=openai_key
)
if self.chain is None:
self.chain = load_chain(
self.wandb_run, self.vector_store, openai_api_key=openai_key
)
history = history or []
question = question.lower()
response = get_answer(
chain=self.chain,
question=question,
chat_history=history,
wandb_run=self.wandb_run
)
history.append((question, response))
return history, history
with gr.Blocks() as demo:
gr.HTML(
"""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
<b>Massa QandA Bot , Massa blockchain is live since 15th of January 2024 !!! </b>
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Hi, I'm a massa documentaion Q and A bot, start by typing in your OpenAI API key, questions/issues you have related to massa usage and then press enter.<br>
Built using <a href="https://langchain.readthedocs.io/en/latest/" target="_blank">LangChain</a> and <a href="https://github.com/gradio-app/gradio" target="_blank">Gradio Github repo</a>
</p>
</div>"""
)
with gr.Row():
question = gr.Textbox(
label="Type in your questions about massa net here and press Enter!",
placeholder="How do I write smart contract with massa ?",
)
openai_api_key = gr.Textbox(
type="password",
label="Enter your OpenAI API key here",
)
state = gr.State()
chatbot = gr.Chatbot()
question.submit(
Chat(
config=default_config,
),
[question, state, openai_api_key],
[chatbot, state],
)
if __name__ == "__main__":
demo.queue().launch(
share=False, show_error=True
# share=False, server_name="0.0.0.0", server_port=8884, show_error=True
)