import torch from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep import comfy.model_management import comfy.conds from enum import Enum from . import utils class ModelType(Enum): EPS = 1 V_PREDICTION = 2 from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete def model_sampling(model_config, model_type): if model_type == ModelType.EPS: c = EPS elif model_type == ModelType.V_PREDICTION: c = V_PREDICTION s = ModelSamplingDiscrete class ModelSampling(s, c): pass return ModelSampling(model_config) class BaseModel(torch.nn.Module): def __init__(self, model_config, model_type=ModelType.EPS, device=None): super().__init__() unet_config = model_config.unet_config self.latent_format = model_config.latent_format self.model_config = model_config if not unet_config.get("disable_unet_model_creation", False): self.diffusion_model = UNetModel(**unet_config, device=device) self.model_type = model_type self.model_sampling = model_sampling(model_config, model_type) self.adm_channels = unet_config.get("adm_in_channels", None) if self.adm_channels is None: self.adm_channels = 0 self.inpaint_model = False print("model_type", model_type.name) print("adm", self.adm_channels) def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): sigma = t xc = self.model_sampling.calculate_input(sigma, x) if c_concat is not None: xc = torch.cat([xc] + [c_concat], dim=1) context = c_crossattn dtype = self.get_dtype() xc = xc.to(dtype) t = self.model_sampling.timestep(t).float() context = context.to(dtype) extra_conds = {} for o in kwargs: extra = kwargs[o] if hasattr(extra, "to"): extra = extra.to(dtype) extra_conds[o] = extra model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() return self.model_sampling.calculate_denoised(sigma, model_output, x) def get_dtype(self): return self.diffusion_model.dtype def is_adm(self): return self.adm_channels > 0 def encode_adm(self, **kwargs): return None def extra_conds(self, **kwargs): out = {} if self.inpaint_model: concat_keys = ("mask", "masked_image") cond_concat = [] denoise_mask = kwargs.get("denoise_mask", None) latent_image = kwargs.get("latent_image", None) noise = kwargs.get("noise", None) device = kwargs["device"] def blank_inpaint_image_like(latent_image): blank_image = torch.ones_like(latent_image) # these are the values for "zero" in pixel space translated to latent space blank_image[:,0] *= 0.8223 blank_image[:,1] *= -0.6876 blank_image[:,2] *= 0.6364 blank_image[:,3] *= 0.1380 return blank_image for ck in concat_keys: if denoise_mask is not None: if ck == "mask": cond_concat.append(denoise_mask[:,:1].to(device)) elif ck == "masked_image": cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space else: if ck == "mask": cond_concat.append(torch.ones_like(noise)[:,:1]) elif ck == "masked_image": cond_concat.append(blank_inpaint_image_like(noise)) data = torch.cat(cond_concat, dim=1) out['c_concat'] = comfy.conds.CONDNoiseShape(data) adm = self.encode_adm(**kwargs) if adm is not None: out['y'] = comfy.conds.CONDRegular(adm) return out def load_model_weights(self, sd, unet_prefix=""): to_load = {} keys = list(sd.keys()) for k in keys: if k.startswith(unet_prefix): to_load[k[len(unet_prefix):]] = sd.pop(k) to_load = self.model_config.process_unet_state_dict(to_load) m, u = self.diffusion_model.load_state_dict(to_load, strict=False) if len(m) > 0: print("unet missing:", m) if len(u) > 0: print("unet unexpected:", u) del to_load return self def process_latent_in(self, latent): return self.latent_format.process_in(latent) def process_latent_out(self, latent): return self.latent_format.process_out(latent) def state_dict_for_saving(self, clip_state_dict, vae_state_dict): clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict) unet_sd = self.diffusion_model.state_dict() unet_state_dict = {} for k in unet_sd: unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k) unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict) if self.get_dtype() == torch.float16: clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16) vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16) if self.model_type == ModelType.V_PREDICTION: unet_state_dict["v_pred"] = torch.tensor([]) return {**unet_state_dict, **vae_state_dict, **clip_state_dict} def set_inpaint(self): self.inpaint_model = True def memory_required(self, input_shape): area = input_shape[0] * input_shape[2] * input_shape[3] if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention(): #TODO: this needs to be tweaked return (area / (comfy.model_management.dtype_size(self.get_dtype()) * 10)) * (1024 * 1024) else: #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory. return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024) def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0): adm_inputs = [] weights = [] noise_aug = [] for unclip_cond in unclip_conditioning: for adm_cond in unclip_cond["clip_vision_output"].image_embeds: weight = unclip_cond["strength"] noise_augment = unclip_cond["noise_augmentation"] noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device)) adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight weights.append(weight) noise_aug.append(noise_augment) adm_inputs.append(adm_out) if len(noise_aug) > 1: adm_out = torch.stack(adm_inputs).sum(0) noise_augment = noise_augment_merge noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device)) adm_out = torch.cat((c_adm, noise_level_emb), 1) return adm_out class SD21UNCLIP(BaseModel): def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None): super().__init__(model_config, model_type, device=device) self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config) def encode_adm(self, **kwargs): unclip_conditioning = kwargs.get("unclip_conditioning", None) device = kwargs["device"] if unclip_conditioning is None: return torch.zeros((1, self.adm_channels)) else: return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05)) def sdxl_pooled(args, noise_augmentor): if "unclip_conditioning" in args: return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280] else: return args["pooled_output"] class SDXLRefiner(BaseModel): def __init__(self, model_config, model_type=ModelType.EPS, device=None): super().__init__(model_config, model_type, device=device) self.embedder = Timestep(256) self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) def encode_adm(self, **kwargs): clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) width = kwargs.get("width", 768) height = kwargs.get("height", 768) crop_w = kwargs.get("crop_w", 0) crop_h = kwargs.get("crop_h", 0) if kwargs.get("prompt_type", "") == "negative": aesthetic_score = kwargs.get("aesthetic_score", 2.5) else: aesthetic_score = kwargs.get("aesthetic_score", 6) out = [] out.append(self.embedder(torch.Tensor([height]))) out.append(self.embedder(torch.Tensor([width]))) out.append(self.embedder(torch.Tensor([crop_h]))) out.append(self.embedder(torch.Tensor([crop_w]))) out.append(self.embedder(torch.Tensor([aesthetic_score]))) flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) return torch.cat((clip_pooled.to(flat.device), flat), dim=1) class SDXL(BaseModel): def __init__(self, model_config, model_type=ModelType.EPS, device=None): super().__init__(model_config, model_type, device=device) self.embedder = Timestep(256) self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) def encode_adm(self, **kwargs): clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) width = kwargs.get("width", 768) height = kwargs.get("height", 768) crop_w = kwargs.get("crop_w", 0) crop_h = kwargs.get("crop_h", 0) target_width = kwargs.get("target_width", width) target_height = kwargs.get("target_height", height) out = [] out.append(self.embedder(torch.Tensor([height]))) out.append(self.embedder(torch.Tensor([width]))) out.append(self.embedder(torch.Tensor([crop_h]))) out.append(self.embedder(torch.Tensor([crop_w]))) out.append(self.embedder(torch.Tensor([target_height]))) out.append(self.embedder(torch.Tensor([target_width]))) flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) return torch.cat((clip_pooled.to(flat.device), flat), dim=1)