import gradio as gr
import pandas as pd
from hub_utils import check_for_discussion, report_results
from model_utils import calculate_memory, get_model
from huggingface_hub.utils import HfHubHTTPError
from hub_model_stats_utils import get_model_type_downloads
# We need to store them as globals because gradio doesn't have a way for us to pass them into the button
MODEL = None
TASK_INP = None
def get_mem_results(model_name: str, library: str, options: list, access_token: str):
global MODEL
MODEL = get_model(model_name, library, access_token)
try:
has_discussion = check_for_discussion(model_name)
except HfHubHTTPError:
has_discussion = True
title = f"## Memory usage for '{model_name}'"
data = calculate_memory(MODEL, options)
return [title, gr.update(visible=True, value=pd.DataFrame(data)), gr.update(visible=not has_discussion)]
with gr.Blocks() as demo:
gr.Markdown("""
Positron Model Universe Explorer
""")
with gr.Tab("Model Size"):
gr.Markdown(
"""Model Memory Calculator
This tool will help you calculate how much vRAM is needed to train and perform big model inference
on a model hosted on the 🤗 Hugging Face Hub. The minimum recommended vRAM needed for a model
s denoted as the size of the "largest layer", and training of a model is roughly 4x its size (for Adam)."""
)
out_text = gr.Markdown()
mem_out = gr.DataFrame(
headers=["dtype", "Largest Layer", "Total Size", "Training using Adam"],
interactive=False,
visible=True,
)
with gr.Row():
model_name_inp = gr.Textbox(label="Model Name or URL", value="TheBloke/Nous-Hermes-13B-GPTQ")
with gr.Row():
library = gr.Radio(["auto", "transformers", "timm"], label="Library", value="auto")
options = gr.CheckboxGroup(
["float32", "float16/bfloat16", "int8", "int4"],
value="float32",
label="Model Precision",
)
access_token = gr.Textbox(label="API Token", placeholder="Optional (for gated models)")
with gr.Row():
mem_btn = gr.Button("Calculate Memory Usage")
post_to_hub = gr.Button(
value="Report results in this model repo's discussions!\n(Will open in a new tab)", visible=False
)
mem_btn.click(
get_mem_results,
inputs=[model_name_inp, library, options, access_token],
outputs=[out_text, mem_out, post_to_hub],
)
with gr.Tab("Model Type"):
gr.Markdown(
"""Models by Model Task
"""
)
with gr.Row():
task_inp = gr.Dropdown(choices = ["text-generation", "question-answering", "text-classification", "unconditional-image-generation"],
value="text-generation", interactive=True, filterable=True, label="Model Task", show_label=True
)
stat_inp = gr.Radio(choices = ["downloads", "likes"], value = "downloads", label = "Sorting By", show_label=True, interactive = True)
with gr.Row():
stats_btn = gr.Button("Pull Stats from HF API")
stats_btn.click(
get_model_type_downloads,
inputs=[task_inp],
outputs=[stats_out]
)
stats_out = gr.Dataframe(row_count=10)
# gr.Dataframe(get_model_type_likes(), row_count=10)
demo.launch(share=True)