import gradio as gr import pandas as pd from hub_utils import check_for_discussion, report_results from model_utils import calculate_memory, get_model from huggingface_hub.utils import HfHubHTTPError from hub_model_stats_utils import get_model_type_downloads # We need to store them as globals because gradio doesn't have a way for us to pass them into the button MODEL = None TASK_INP = None def get_mem_results(model_name: str, library: str, options: list, access_token: str): global MODEL MODEL = get_model(model_name, library, access_token) try: has_discussion = check_for_discussion(model_name) except HfHubHTTPError: has_discussion = True title = f"## Memory usage for '{model_name}'" data = calculate_memory(MODEL, options) return [title, gr.update(visible=True, value=pd.DataFrame(data)), gr.update(visible=not has_discussion)] with gr.Blocks() as demo: gr.Markdown("""

Positron Model Universe Explorer

""") with gr.Tab("Model Size"): gr.Markdown( """

Model Memory Calculator

This tool will help you calculate how much vRAM is needed to train and perform big model inference on a model hosted on the 🤗 Hugging Face Hub. The minimum recommended vRAM needed for a model s denoted as the size of the "largest layer", and training of a model is roughly 4x its size (for Adam).""" ) out_text = gr.Markdown() mem_out = gr.DataFrame( headers=["dtype", "Largest Layer", "Total Size", "Training using Adam"], interactive=False, visible=True, ) with gr.Row(): model_name_inp = gr.Textbox(label="Model Name or URL", value="TheBloke/Nous-Hermes-13B-GPTQ") with gr.Row(): library = gr.Radio(["auto", "transformers", "timm"], label="Library", value="auto") options = gr.CheckboxGroup( ["float32", "float16/bfloat16", "int8", "int4"], value="float32", label="Model Precision", ) access_token = gr.Textbox(label="API Token", placeholder="Optional (for gated models)") with gr.Row(): mem_btn = gr.Button("Calculate Memory Usage") post_to_hub = gr.Button( value="Report results in this model repo's discussions!\n(Will open in a new tab)", visible=False ) mem_btn.click( get_mem_results, inputs=[model_name_inp, library, options, access_token], outputs=[out_text, mem_out, post_to_hub], ) with gr.Tab("Model Type"): gr.Markdown( """

Models by Model Task

""" ) with gr.Row(): task_inp = gr.Dropdown(choices = ["text-generation", "question-answering", "text-classification", "unconditional-image-generation"], value="text-generation", interactive=True, filterable=True, label="Model Task", show_label=True ) stat_inp = gr.Radio(choices = ["downloads", "likes"], value = "downloads", label = "Sorting By", show_label=True, interactive = True) with gr.Row(): stats_btn = gr.Button("Pull Stats from HF API") stats_btn.click( get_model_type_downloads, inputs=[task_inp], outputs=[stats_out] ) stats_out = gr.Dataframe(row_count=10) # gr.Dataframe(get_model_type_likes(), row_count=10) demo.launch(share=True)