import gradio as gr import torch import torchvision.transforms as transforms from sentence_transformers import SentenceTransformer, util import json import os import matplotlib.pyplot as plt import random import torch import torch.nn as nn # The Generator model class Generator(nn.Module): def __init__(self, channels, noise_dim=100, embed_dim=1024, embed_out_dim=128): super(Generator, self).__init__() self.channels = channels self.noise_dim = noise_dim self.embed_dim = embed_dim self.embed_out_dim = embed_out_dim # Text embedding layers self.text_embedding = nn.Sequential( nn.Linear(self.embed_dim, self.embed_out_dim), nn.BatchNorm1d(1), nn.LeakyReLU(0.2, inplace=True) ) # Generator architecture model = [] model += self._create_layer(self.noise_dim + self.embed_out_dim, 512, 4, stride=1, padding=0) model += self._create_layer(512, 256, 4, stride=2, padding=1) model += self._create_layer(256, 128, 4, stride=2, padding=1) model += self._create_layer(128, 64, 4, stride=2, padding=1) model += self._create_layer(64, 32, 4, stride=2, padding=1) model += self._create_layer(32, self.channels, 4, stride=2, padding=1, output=True) self.model = nn.Sequential(*model) def _create_layer(self, size_in, size_out, kernel_size=4, stride=2, padding=1, output=False): layers = [nn.ConvTranspose2d(size_in, size_out, kernel_size, stride=stride, padding=padding, bias=False)] if output: layers.append(nn.Tanh()) # Tanh activation for the output layer else: layers += [nn.BatchNorm2d(size_out), nn.ReLU(True)] # Batch normalization and ReLU for other layers return layers def forward(self, noise, text): # Apply text embedding to the input text text = self.text_embedding(text) text = text.view(text.shape[0], text.shape[2], 1, 1) # Reshape to match the generator input size z = torch.cat([text, noise], 1) # Concatenate text embedding with noise return self.model(z) noise_dim = 16 embed_dim = 384 embed_out_dim = 256 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Path to your .pth file gen_weight = 'generator_20240421_3.pth' # Load the weights weights_gen = torch.load(gen_weight, map_location=torch.device(device)) # Apply the weights to your model generator.load_state_dict(weights_gen) # Load your model and other components here model = SentenceTransformer('sentence-transformers/all-MiniLM-L12-v2') with open(os.path.join("descriptions.json"), 'r') as file: dataset = json.load(file) classes = [e["text"] for e in dataset] embeddings_list = {cls: model.encode(cls, convert_to_tensor=True) for cls in classes} def generate_image(caption): noise_dim = 16 results = [(util.pytorch_cos_sim(model.encode(caption, convert_to_tensor=True), embeddings[cls]).item(), cls) for cls in classes] sorted_results = sorted(results, key=lambda x: x[0], reverse=True)[:5] threshold = 0.40 coeff = 0.89 if sorted_results[0][0] <= threshold: caption = sorted_results[0][1] results = [(util.pytorch_cos_sim(model.encode(caption, convert_to_tensor=True), embeddings[cls]).item(), cls) for cls in classes] sorted_results = sorted(results, key=lambda x: x[0], reverse=True)[:5] if sorted_results[0][0] >= 0.99: coeff = 0.85 last_score = sorted_results[0][0] filtered_results = [] for score, cls in sorted_results: if score >= last_score * coeff: filtered_results.append((score, cls)) last_score = score else: break items = [cls for score, cls in filtered_results] probabilities = [score for score, cls in filtered_results] sampled_item = random.choices(items, weights=probabilities, k=1)[0] noise = torch.randn(1, noise_dim, 1, 1, device=device) # Adjust noise_dim if different fake_images = generator(noise, embeddings[sampled_item].unsqueeze(0).unsqueeze(0)) img = fake_images.squeeze(0).permute(1, 2, 0).cpu().detach().numpy() img = (img - img.min()) / (img.max() - img.min()) return img iface = gr.Interface(fn=generate_image, inputs=gr.Textbox(lines=2, placeholder="Enter Caption Here..."), outputs=gr.Image(type="numpy"), title="Text-to-Image Generation", description="Enter a caption to generate an image.") iface.launch()