import torch import torch.nn as nn # The Generator model class Generator(nn.Module): def __init__(self, channels, noise_dim=100, embed_dim=1024, embed_out_dim=128): super(Generator, self).__init__() self.channels = channels self.noise_dim = noise_dim self.embed_dim = embed_dim self.embed_out_dim = embed_out_dim # Text embedding layers self.text_embedding = nn.Sequential( nn.Linear(self.embed_dim, self.embed_out_dim), nn.BatchNorm1d(1), nn.LeakyReLU(0.2, inplace=True) ) # Generator architecture model = [] model += self._create_layer(self.noise_dim + self.embed_out_dim, 512, 4, stride=1, padding=0) model += self._create_layer(512, 256, 4, stride=2, padding=1) model += self._create_layer(256, 128, 4, stride=2, padding=1) model += self._create_layer(128, 64, 4, stride=2, padding=1) model += self._create_layer(64, 32, 4, stride=2, padding=1) model += self._create_layer(32, self.channels, 4, stride=2, padding=1, output=True) self.model = nn.Sequential(*model) def _create_layer(self, size_in, size_out, kernel_size=4, stride=2, padding=1, output=False): layers = [nn.ConvTranspose2d(size_in, size_out, kernel_size, stride=stride, padding=padding, bias=False)] if output: layers.append(nn.Tanh()) # Tanh activation for the output layer else: layers += [nn.BatchNorm2d(size_out), nn.ReLU(True)] # Batch normalization and ReLU for other layers return layers def forward(self, noise, text): # Apply text embedding to the input text text = self.text_embedding(text) text = text.view(text.shape[0], text.shape[2], 1, 1) # Reshape to match the generator input size z = torch.cat([text, noise], 1) # Concatenate text embedding with noise return self.model(z)