import gradio as gr
import boto3, json, os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
config = {
"max_tokens": 1000,
"model": "anthropic.claude-3-opus-20240229-v1:0",
"temperature": 0,
"top_k": 250,
"top_p": 0.999,
}
bedrock_runtime = boto3.client(
aws_access_key_id = aws_access_key_id,
aws_secret_access_key = aws_secret_access_key,
service_name = "bedrock-runtime",
region_name = "us-west-2"
)
def invoke(prompt):
if not prompt:
raise gr.Error("Prompt is required.")
raise gr.Error("Please clone and bring your own credentials.")
completion = ""
try:
body = {
"anthropic_version": "bedrock-2023-05-31",
"messages": [
{"role": "user", "content": [{"type": "text", "text": prompt}]},
],
"system": "You are a honest, helpful, and harmless bot."
}
model_id = config["model"]
model_kwargs = {
"max_tokens": config["max_tokens"],
"stop_sequences": ["\n\nHuman"],
"temperature": config["temperature"],
"top_k": config["top_k"],
"top_p": config["top_p"]
}
body.update(model_kwargs)
response = bedrock_runtime.invoke_model(modelId=model_id,
body=json.dumps(body))
response_body = json.loads(response.get("body").read())
completion = response_body.get("content", [])[0].get("text", "")
except Exception as e:
completion = e
raise gr.Error(e)
return completion
description = """Gradio UI using the Amazon Bedrock SDK
with Anthropic Claude 3 model."""
gr.close_all()
demo = gr.Interface(fn = invoke,
inputs = [gr.Textbox(label = "Prompt", value = "hi", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - LLM",
description = description)
demo.launch()