jplu commited on
Commit
18e37bf
1 Parent(s): ab71d25

add module default template

Browse files
Files changed (5) hide show
  1. README.md +44 -6
  2. app.py +6 -0
  3. classification_report.py +95 -0
  4. requirements.txt +1 -0
  5. tests.py +17 -0
README.md CHANGED
@@ -1,12 +1,50 @@
1
  ---
2
- title: Classification Report
3
- emoji: 💩
4
- colorFrom: gray
5
- colorTo: gray
 
 
 
6
  sdk: gradio
7
- sdk_version: 3.16.1
8
  app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: classification_report
3
+ datasets:
4
+ -
5
+ tags:
6
+ - evaluate
7
+ - metric
8
+ description: "TODO: add a description here"
9
  sdk: gradio
10
+ sdk_version: 3.0.2
11
  app_file: app.py
12
  pinned: false
13
  ---
14
 
15
+ # Metric Card for classification_report
16
+
17
+ ***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
18
+
19
+ ## Metric Description
20
+ *Give a brief overview of this metric, including what task(s) it is usually used for, if any.*
21
+
22
+ ## How to Use
23
+ *Give general statement of how to use the metric*
24
+
25
+ *Provide simplest possible example for using the metric*
26
+
27
+ ### Inputs
28
+ *List all input arguments in the format below*
29
+ - **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*
30
+
31
+ ### Output Values
32
+
33
+ *Explain what this metric outputs and provide an example of what the metric output looks like. Modules should return a dictionary with one or multiple key-value pairs, e.g. {"bleu" : 6.02}*
34
+
35
+ *State the range of possible values that the metric's output can take, as well as what in that range is considered good. For example: "This metric can take on any value between 0 and 100, inclusive. Higher scores are better."*
36
+
37
+ #### Values from Popular Papers
38
+ *Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
39
+
40
+ ### Examples
41
+ *Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*
42
+
43
+ ## Limitations and Bias
44
+ *Note any known limitations or biases that the metric has, with links and references if possible.*
45
+
46
+ ## Citation
47
+ *Cite the source where this metric was introduced.*
48
+
49
+ ## Further References
50
+ *Add any useful further references.*
app.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import evaluate
2
+ from evaluate.utils import launch_gradio_widget
3
+
4
+
5
+ module = evaluate.load("bstrai/classification_report")
6
+ launch_gradio_widget(module)
classification_report.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """TODO: Add a description here."""
15
+
16
+ import evaluate
17
+ import datasets
18
+
19
+
20
+ # TODO: Add BibTeX citation
21
+ _CITATION = """\
22
+ @InProceedings{huggingface:module,
23
+ title = {A great new module},
24
+ authors={huggingface, Inc.},
25
+ year={2020}
26
+ }
27
+ """
28
+
29
+ # TODO: Add description of the module here
30
+ _DESCRIPTION = """\
31
+ This new module is designed to solve this great ML task and is crafted with a lot of care.
32
+ """
33
+
34
+
35
+ # TODO: Add description of the arguments of the module here
36
+ _KWARGS_DESCRIPTION = """
37
+ Calculates how good are predictions given some references, using certain scores
38
+ Args:
39
+ predictions: list of predictions to score. Each predictions
40
+ should be a string with tokens separated by spaces.
41
+ references: list of reference for each prediction. Each
42
+ reference should be a string with tokens separated by spaces.
43
+ Returns:
44
+ accuracy: description of the first score,
45
+ another_score: description of the second score,
46
+ Examples:
47
+ Examples should be written in doctest format, and should illustrate how
48
+ to use the function.
49
+
50
+ >>> my_new_module = evaluate.load("my_new_module")
51
+ >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
52
+ >>> print(results)
53
+ {'accuracy': 1.0}
54
+ """
55
+
56
+ # TODO: Define external resources urls if needed
57
+ BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
58
+
59
+
60
+ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
61
+ class classification_report(evaluate.Metric):
62
+ """TODO: Short description of my evaluation module."""
63
+
64
+ def _info(self):
65
+ # TODO: Specifies the evaluate.EvaluationModuleInfo object
66
+ return evaluate.MetricInfo(
67
+ # This is the description that will appear on the modules page.
68
+ module_type="metric",
69
+ description=_DESCRIPTION,
70
+ citation=_CITATION,
71
+ inputs_description=_KWARGS_DESCRIPTION,
72
+ # This defines the format of each prediction and reference
73
+ features=datasets.Features({
74
+ 'predictions': datasets.Value('int64'),
75
+ 'references': datasets.Value('int64'),
76
+ }),
77
+ # Homepage of the module for documentation
78
+ homepage="http://module.homepage",
79
+ # Additional links to the codebase or references
80
+ codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
81
+ reference_urls=["http://path.to.reference.url/new_module"]
82
+ )
83
+
84
+ def _download_and_prepare(self, dl_manager):
85
+ """Optional: download external resources useful to compute the scores"""
86
+ # TODO: Download external resources if needed
87
+ pass
88
+
89
+ def _compute(self, predictions, references):
90
+ """Returns the scores"""
91
+ # TODO: Compute the different scores of the module
92
+ accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
93
+ return {
94
+ "accuracy": accuracy,
95
+ }
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ git+https://github.com/huggingface/evaluate@main
tests.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ test_cases = [
2
+ {
3
+ "predictions": [0, 0],
4
+ "references": [1, 1],
5
+ "result": {"metric_score": 0}
6
+ },
7
+ {
8
+ "predictions": [1, 1],
9
+ "references": [1, 1],
10
+ "result": {"metric_score": 1}
11
+ },
12
+ {
13
+ "predictions": [1, 0],
14
+ "references": [1, 1],
15
+ "result": {"metric_score": 0.5}
16
+ }
17
+ ]