Spaces:
Runtime error
Runtime error
burraco135
commited on
Commit
•
7e2ad98
1
Parent(s):
990d75e
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,56 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
from transformers import AutoProcessor, SpeechT5ForTextToSpeech
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
def tts(text):
|
10 |
inputs = processor(text=text, return_tensors="pt")
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
|
6 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
|
|
7 |
|
8 |
+
checkpoint = "burraco135/speecht5_finetuned_voxpopuli_it"
|
9 |
+
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
10 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
|
11 |
+
vocoder = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
12 |
+
|
13 |
+
def predict(text, speaker):
|
14 |
+
if len(text.strip()) == 0:
|
15 |
+
return (16000, np.zeros(0).astype(np.int16))
|
16 |
|
|
|
17 |
inputs = processor(text=text, return_tensors="pt")
|
18 |
+
|
19 |
+
# limit input length
|
20 |
+
input_ids = inputs["input_ids"]
|
21 |
+
input_ids = input_ids[..., :model.config.max_text_positions]
|
22 |
+
|
23 |
+
if speaker == "Surprise Me!":
|
24 |
+
# load one of the provided speaker embeddings at random
|
25 |
+
idx = np.random.randint(len(speaker_embeddings))
|
26 |
+
key = list(speaker_embeddings.keys())[idx]
|
27 |
+
speaker_embedding = np.load(speaker_embeddings[key])
|
28 |
+
|
29 |
+
# randomly shuffle the elements
|
30 |
+
np.random.shuffle(speaker_embedding)
|
31 |
+
|
32 |
+
# randomly flip half the values
|
33 |
+
x = (np.random.rand(512) >= 0.5) * 1.0
|
34 |
+
x[x == 0] = -1.0
|
35 |
+
speaker_embedding *= x
|
36 |
+
|
37 |
+
#speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15
|
38 |
+
else:
|
39 |
+
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
|
40 |
+
|
41 |
+
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
42 |
+
|
43 |
+
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
|
44 |
+
|
45 |
+
speech = (speech.numpy() * 32767).astype(np.int16)
|
46 |
+
return (16000, speech)
|
47 |
+
|
48 |
+
gr.Interface(
|
49 |
+
fn=predict,
|
50 |
+
inputs=[
|
51 |
+
gr.Text(label="Input Text"),
|
52 |
+
],
|
53 |
+
outputs=[
|
54 |
+
gr.Audio(label="Generated Speech", type="numpy"),
|
55 |
+
]
|
56 |
+
).launch()
|