import gradio as gr import librosa import numpy as np import torch from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan checkpoint = "burraco135/speecht5_finetuned_voxpopuli_it" processor = SpeechT5Processor.from_pretrained(checkpoint) model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint) vocoder = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") def predict(text, speaker): inputs = processor(text=text, return_tensors="pt") # limit input length input_ids = inputs["input_ids"] input_ids = input_ids[..., :model.config.max_text_positions] speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0) speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder) speech = (speech.numpy() * 32767).astype(np.int16) return (16000, speech) gr.Interface( fn=predict, inputs=[ gr.Text(label="Input Text"), ], outputs=[ gr.Audio(label="Generated Speech", type="numpy"), ] ).launch()