import argparse from pathlib import Path import numpy as np import torch from omegaconf import OmegaConf from skimage.io import imsave from ldm.models.diffusion.sync_dreamer import SyncMultiviewDiffusion from ldm.util import instantiate_from_config, prepare_inputs def load_model(cfg,ckpt,strict=True): config = OmegaConf.load(cfg) model = instantiate_from_config(config.model) print(f'loading model from {ckpt} ...') ckpt = torch.load(ckpt,map_location='cpu') model.load_state_dict(ckpt['state_dict'],strict=strict) model = model.cuda().eval() return model def main(): parser = argparse.ArgumentParser() parser.add_argument('--cfg',type=str, default='configs/syncdreamer.yaml') parser.add_argument('--ckpt',type=str, default='ckpt/syncdreamer-step80k.ckpt') parser.add_argument('--output', type=str, required=True) parser.add_argument('--input', type=str, required=True) parser.add_argument('--elevation', type=float, required=True) parser.add_argument('--sample_num', type=int, default=4) parser.add_argument('--crop_size', type=int, default=-1) parser.add_argument('--cfg_scale', type=float, default=2.0) parser.add_argument('--batch_view_num', type=int, default=8) parser.add_argument('--seed', type=int, default=6033) flags = parser.parse_args() torch.random.manual_seed(flags.seed) np.random.seed(flags.seed) model = load_model(flags.cfg, flags.ckpt, strict=True) assert isinstance(model, SyncMultiviewDiffusion) Path(f'{flags.output}').mkdir(exist_ok=True, parents=True) # prepare data data = prepare_inputs(flags.input, flags.elevation, flags.crop_size) for k, v in data.items(): data[k] = v.unsqueeze(0).cuda() data[k] = torch.repeat_interleave(data[k], flags.sample_num, dim=0) x_sample = model.sample(data, flags.cfg_scale, flags.batch_view_num) B, N, _, H, W = x_sample.shape x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5 x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255 x_sample = x_sample.astype(np.uint8) for bi in range(B): output_fn = Path(flags.output)/ f'{bi}.png' imsave(output_fn, np.concatenate([x_sample[bi,ni] for ni in range(N)], 1)) if __name__=="__main__": main()