Spaces:
Running
Running
File size: 11,073 Bytes
37ee4a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import torch
import numpy as np
from PIL import Image
from typing import Optional, Union, Tuple, List
from tqdm import tqdm
import os
from diffusers import DDIMInverseScheduler,DPMSolverMultistepInverseScheduler
import spaces
class Inversion:
def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray]):
timestep, next_timestep = min(
timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
@torch.no_grad()
def get_noise_pred_single(self, latents, t, context,cond=True,both=False):
added_cond_id=1 if cond else 0
do_classifier_free_guidance=False
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if both is False:
added_cond_kwargs = {"text_embeds": self.add_text_embeds[added_cond_id].unsqueeze(0).repeat(self.inv_batch_size,1), "time_ids": self.add_time_ids[added_cond_id].unsqueeze(0).repeat(self.inv_batch_size,1)}
else:
added_cond_kwargs = {"text_embeds": self.add_text_embeds, "time_ids": self.add_time_ids}
noise_pred = self.model.unet(
latent_model_input,
t,
encoder_hidden_states=context,
cross_attention_kwargs=None,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
return noise_pred
@torch.no_grad()
def latent2image(self, latents, return_type='np'):
latents = 1 / self.model.vae.config.scaling_factor * latents.detach()
self.model.vae.to(dtype=torch.float32)
image = self.model.vae.decode(latents)['sample']
if return_type == 'np':
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).astype(np.uint8)
return image
@torch.no_grad()
@spaces.GPU
def image2latent(self, image):
with torch.no_grad():
if type(image) is Image:
image = np.array(image)
else:
if image.ndim==3:
image=np.expand_dims(image,0)
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(0, 3, 1, 2).to(self.device)
print(f"Running on device: {self.device}")
latents=[]
for i,_ in enumerate(image):
latent=self.model.vae.encode(image[i:i+1])['latent_dist'].mean
latents.append(latent)
latents=torch.stack(latents).squeeze(1)
latents = latents * self.model.vae.config.scaling_factor
return latents
@torch.no_grad()
def init_prompt(
self,
prompt: Union[str, List[str]],
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
):
original_size = original_size or (1024, 1024)
target_size = target_size or (1024, 1024)
# 3. Encode input prompt
do_classifier_free_guidance=True
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.model.encode_prompt_not_zero_uncond(
prompt,
self.model.device,
1,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
lora_scale=None,
)
prompt_embeds=prompt_embeds[:self.inv_batch_size]
negative_prompt_embeds=negative_prompt_embeds[:self.inv_batch_size]
pooled_prompt_embeds=pooled_prompt_embeds[:self.inv_batch_size]
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds[:self.inv_batch_size]
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
add_time_ids = self.model._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(self.device)
self.add_text_embeds = add_text_embeds.to(self.device)
self.add_time_ids = add_time_ids.to(self.device).repeat(self.inv_batch_size * 1, 1)
self.prompt_embeds=prompt_embeds
self.negative_prompt_embeds=negative_prompt_embeds
self.pooled_prompt_embeds=pooled_prompt_embeds
self.negative_pooled_prompt_embeds=negative_pooled_prompt_embeds
self.prompt = prompt
self.context=prompt_embeds
@torch.no_grad()
@spaces.GPU
def ddim_loop(self, latent):
uncond_embeddings, cond_embeddings = self.context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
extra_step_kwargs = self.model.prepare_extra_step_kwargs(self.generator, self.eta)
if isinstance(self.inverse_scheduler,DDIMInverseScheduler):
extra_step_kwargs.pop("generator")
for i in tqdm(range(self.num_ddim_steps)):
use_inv_sc=False
if use_inv_sc:
t = self.inverse_scheduler.timesteps[i]
noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings,cond=True)
latent = self.inverse_scheduler.step(noise_pred, t, latent, **extra_step_kwargs, return_dict=False)[0]
else:
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings,cond=True)
latent = self.next_step(noise_pred, t, latent)
all_latent.append(latent)
return all_latent
@property
def scheduler(self):
return self.model.scheduler
@torch.no_grad()
@spaces.GPU
def ddim_inversion(self, image):
latent = self.image2latent(image)
image_rec = self.latent2image(latent)
ddim_latents = self.ddim_loop(latent.to(self.model.unet.dtype))
return image_rec, ddim_latents
from typing import Union, List, Dict
import numpy as np
@spaces.GPU
def invert(self, image_gt, prompt: Union[str, List[str]],
verbose=True, inv_output_pos=None, inv_batch_size=1):
self.inv_batch_size = inv_batch_size
self.init_prompt(prompt)
out_put_pos = 0 if inv_output_pos is None else inv_output_pos
self.out_put_pos = out_put_pos
if verbose:
print("DDIM inversion...")
image_rec, ddim_latents = self.ddim_inversion(image_gt)
if verbose:
print("Done.")
return (image_gt, image_rec), ddim_latents[-1], ddim_latents, self.prompt_embeds[self.prompt_embeds.shape[0]//2:], self.pooled_prompt_embeds
def __init__(self, model,num_ddim_steps,generator=None,scheduler_type="DDIM"):
self.model = model
self.tokenizer = self.model.tokenizer
self.num_ddim_steps=num_ddim_steps
if scheduler_type == "DDIM":
self.inverse_scheduler=DDIMInverseScheduler.from_config(self.model.scheduler.config)
self.inverse_scheduler.set_timesteps(num_ddim_steps)
elif scheduler_type=="DPMSolver":
self.inverse_scheduler=DPMSolverMultistepInverseScheduler.from_config(self.model.scheduler.config)
self.inverse_scheduler.set_timesteps(num_ddim_steps)
self.model.scheduler.set_timesteps(num_ddim_steps)
self.model.vae.to(dtype=torch.float32)
self.prompt = None
self.context = None
# self.device=self.model.unet.device
self.device = torch.device("cuda:0")
self.generator=generator
self.eta=0.0
def load_512(image_path, left=0, right=0, top=0, bottom=0):
if type(image_path) is str:
image = np.array(Image.open(image_path))[:, :, :3]
else:
image = image_path
h, w, c = image.shape
left = min(left, w - 1)
right = min(right, w - left - 1)
top = min(top, h - left - 1)
bottom = min(bottom, h - top - 1)
image = image[top:h - bottom, left:w - right]
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = np.array(Image.fromarray(image).resize((512, 512)))
return image
def load_1024_mask(image_path, left=0, right=0, top=0, bottom=0,target_H=128,target_W=128):
if type(image_path) is str:
image = np.array(Image.open(image_path))[:, :, np.newaxis]
else:
image = image_path
if len(image.shape) == 4:
image = image[:, :, :, 0]
h, w, c = image.shape
left = min(left, w - 1)
right = min(right, w - left - 1)
top = min(top, h - left - 1)
bottom = min(bottom, h - top - 1)
image = image[top:h - bottom, left:w - right]
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image=image.squeeze()
image = np.array(Image.fromarray(image).resize((target_H, target_W)))
return image
def load_1024(image_path, left=0, right=0, top=0, bottom=0):
if type(image_path) is str:
image = np.array(Image.open(image_path).resize((1024, 1024)))[:, :, :3]
else:
image = image_path
h, w, c = image.shape
left = min(left, w - 1)
right = min(right, w - left - 1)
top = min(top, h - left - 1)
bottom = min(bottom, h - top - 1)
image = image[top:h - bottom, left:w - right]
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = np.array(Image.fromarray(image).resize((1024, 1024)))
return image |