OpenData-Bordeaux-RSE / chat_te.py
Ilyas KHIAT
paste
81f75af
raw
history blame
4.22 kB
import streamlit as st
from langchain_core.messages import AIMessage, HumanMessage
from langchain_community.chat_models import ChatOpenAI
from dotenv import load_dotenv
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from download_chart import construct_plot
from langchain_core.runnables import RunnablePassthrough
from langchain import hub
from langchain_core.prompts.prompt import PromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain_experimental.text_splitter import SemanticChunker
load_dotenv()
def get_docs_from_pdf(file):
loader = PyPDFLoader(file)
docs = loader.load_and_split()
return docs
def get_doc_chunks(docs):
text_splitter = SemanticChunker(OpenAIEmbeddings(model="text-embedding-3-small"))
chunks = text_splitter.split_documents(docs)
return chunks
def get_vectorstore_from_docs(doc_chunks):
embedding = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = FAISS.from_documents(documents=doc_chunks, embedding=embedding)
return vectorstore
def get_conversation_chain(vectorstore):
llm = ChatOpenAI(model="gpt-4o",temperature=0.5, max_tokens=2048)
retriever=vectorstore.as_retriever()
prompt = hub.pull("rlm/rag-prompt")
# Chain
rag_chain = (
{"context": retriever , "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
return rag_chain
def create_db(file):
# docs = get_docs_from_pdf(file)
# doc_chunks = get_doc_chunks(docs)
# vectorstore = get_vectorstore_from_docs(doc_chunks)
vectorstore = FAISS.load_local(file, OpenAIEmbeddings(model="text-embedding-3-small"),allow_dangerous_deserialization= True)
return vectorstore
def get_response(chain,user_query, chat_history):
template = """
Chat history: {chat_history}
User question: {user_question}
"""
question = ChatPromptTemplate.from_template(template)
question = question.format(chat_history=chat_history, user_question=user_query)
return chain.stream(question)
@st.experimental_dialog("Cast your vote")
def vote(item):
st.write(f"Why is {item} your favorite?")
reason = st.text_input("Because...")
if st.button("Submit"):
st.rerun()
def display_chat_te():
# app config
st.title("Chatbot")
# session state
if "chat_history_te" not in st.session_state:
st.session_state.chat_history_te = [
AIMessage(content="Salut, posez-moi vos question sur la transistion ecologique."),
]
if "chain" not in st.session_state:
db=create_db("./DATA_bziiit/vectorstore_op")
chain = get_conversation_chain(db)
st.session_state.chain = chain
# conversation
for message in st.session_state.chat_history_te:
if isinstance(message, AIMessage):
with st.chat_message("AI"):
st.write(message.content)
elif isinstance(message, HumanMessage):
with st.chat_message("Moi"):
st.write(message.content)
style = """
<style>
.css-ocqkz7 {
position: fixed;
bottom: 0;
width: 50%;
justify-content: center;
align-items: end;
margin-bottom: 0.5rem;
}
</style>
"""
# Inject the styling code for both elements
# st.markdown(style, unsafe_allow_html=True)
# # user input
# col1 , col2 = st.columns([1,8])
# if col1.button("chatbot"):
# vote("chatbot")
# with col2:
user_query = st.chat_input(placeholder="c'est quoi la transition écologique ?")
if user_query is not None and user_query != "":
st.session_state.chat_history_te.append(HumanMessage(content=user_query))
with st.chat_message("Moi"):
st.markdown(user_query)
with st.chat_message("AI"):
response = st.write_stream(get_response(st.session_state.chain,user_query, st.session_state.chat_history_te))
st.session_state.chat_history_te.append(AIMessage(content=response))