ImgCapt / fairseq /examples /hubert /config /pretrain /hubert_large_librivox.yaml
cagataydag's picture
Duplicate from OFA-Sys/OFA-Image_Caption
733aa30
# @package _group_
common:
fp16: true
log_format: json
log_interval: 200
seed: 1337
tensorboard_logdir: tblog
checkpoint:
save_interval_updates: 25000
keep_interval_updates: 1
no_epoch_checkpoints: true
distributed_training:
ddp_backend: no_c10d
distributed_backend: 'nccl'
distributed_world_size: 128
distributed_port: 29671
nprocs_per_node: 8
find_unused_parameters: true
task:
_name: hubert_pretraining
data: ???
label_dir: ???
labels: ???
label_rate: ${model.label_rate}
sample_rate: 16000
max_sample_size: 250000
min_sample_size: 32000
pad_audio: false
random_crop: true
normalize: true # must be consistent with extractor
dataset:
num_workers: 6
max_tokens: 900000
skip_invalid_size_inputs_valid_test: true
validate_interval: 5
validate_interval_updates: 10000
criterion:
_name: hubert
pred_masked_weight: 1.0
pred_nomask_weight: 0.0
loss_weights: [10,]
optimization:
max_update: 400000
lr: [0.0015]
clip_norm: 1.0
optimizer:
_name: adam
adam_betas: (0.9,0.98)
adam_eps: 1e-06
weight_decay: 0.01
lr_scheduler:
_name: polynomial_decay
warmup_updates: 32000
model:
_name: hubert
label_rate: ???
encoder_layers: 24
encoder_embed_dim: 1024
encoder_ffn_embed_dim: 4096
encoder_attention_heads: 16
final_dim: 768
skip_masked: false
skip_nomask: false
mask_prob: 0.80
extractor_mode: layer_norm
conv_feature_layers: '[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2'
encoder_layerdrop: 0.0
dropout_input: 0.0
dropout_features: 0.0
dropout: 0.0
attention_dropout: 0.0
layer_norm_first: true
feature_grad_mult: 1.0
untie_final_proj: true
activation_dropout: 0.0
hydra:
job:
config:
override_dirname:
kv_sep: '-'
item_sep: '__'
exclude_keys:
- run
- task.data
run:
dir: /checkpoint/wnhsu/w2v/hubert_final/hydra_pt
sweep:
dir: /checkpoint/wnhsu/w2v/hubert_final/hydra_pt
subdir: ${hydra.job.config_name}__${hydra.job.override_dirname}