cagataydag's picture
Duplicate from OFA-Sys/OFA-Image_Caption
733aa30
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from concurrent.futures import ThreadPoolExecutor
import logging
from omegaconf import MISSING
import os
import torch
from typing import Optional
import warnings
from dataclasses import dataclass
from fairseq.dataclass import FairseqDataclass
from .kaldi_initializer import KaldiInitializerConfig, initalize_kaldi
logger = logging.getLogger(__name__)
@dataclass
class KaldiDecoderConfig(FairseqDataclass):
hlg_graph_path: Optional[str] = None
output_dict: str = MISSING
kaldi_initializer_config: Optional[KaldiInitializerConfig] = None
acoustic_scale: float = 0.5
max_active: int = 10000
beam_delta: float = 0.5
hash_ratio: float = 2.0
is_lattice: bool = False
lattice_beam: float = 10.0
prune_interval: int = 25
determinize_lattice: bool = True
prune_scale: float = 0.1
max_mem: int = 0
phone_determinize: bool = True
word_determinize: bool = True
minimize: bool = True
num_threads: int = 1
class KaldiDecoder(object):
def __init__(
self,
cfg: KaldiDecoderConfig,
beam: int,
nbest: int = 1,
):
try:
from kaldi.asr import FasterRecognizer, LatticeFasterRecognizer
from kaldi.base import set_verbose_level
from kaldi.decoder import (
FasterDecoder,
FasterDecoderOptions,
LatticeFasterDecoder,
LatticeFasterDecoderOptions,
)
from kaldi.lat.functions import DeterminizeLatticePhonePrunedOptions
from kaldi.fstext import read_fst_kaldi, SymbolTable
except:
warnings.warn(
"pykaldi is required for this functionality. Please install from https://github.com/pykaldi/pykaldi"
)
# set_verbose_level(2)
self.acoustic_scale = cfg.acoustic_scale
self.nbest = nbest
if cfg.hlg_graph_path is None:
assert (
cfg.kaldi_initializer_config is not None
), "Must provide hlg graph path or kaldi initializer config"
cfg.hlg_graph_path = initalize_kaldi(cfg.kaldi_initializer_config)
assert os.path.exists(cfg.hlg_graph_path), cfg.hlg_graph_path
if cfg.is_lattice:
self.dec_cls = LatticeFasterDecoder
opt_cls = LatticeFasterDecoderOptions
self.rec_cls = LatticeFasterRecognizer
else:
assert self.nbest == 1, "nbest > 1 requires lattice decoder"
self.dec_cls = FasterDecoder
opt_cls = FasterDecoderOptions
self.rec_cls = FasterRecognizer
self.decoder_options = opt_cls()
self.decoder_options.beam = beam
self.decoder_options.max_active = cfg.max_active
self.decoder_options.beam_delta = cfg.beam_delta
self.decoder_options.hash_ratio = cfg.hash_ratio
if cfg.is_lattice:
self.decoder_options.lattice_beam = cfg.lattice_beam
self.decoder_options.prune_interval = cfg.prune_interval
self.decoder_options.determinize_lattice = cfg.determinize_lattice
self.decoder_options.prune_scale = cfg.prune_scale
det_opts = DeterminizeLatticePhonePrunedOptions()
det_opts.max_mem = cfg.max_mem
det_opts.phone_determinize = cfg.phone_determinize
det_opts.word_determinize = cfg.word_determinize
det_opts.minimize = cfg.minimize
self.decoder_options.det_opts = det_opts
self.output_symbols = {}
with open(cfg.output_dict, "r") as f:
for line in f:
items = line.rstrip().split()
assert len(items) == 2
self.output_symbols[int(items[1])] = items[0]
logger.info(f"Loading FST from {cfg.hlg_graph_path}")
self.fst = read_fst_kaldi(cfg.hlg_graph_path)
self.symbol_table = SymbolTable.read_text(cfg.output_dict)
self.executor = ThreadPoolExecutor(max_workers=cfg.num_threads)
def generate(self, models, sample, **unused):
"""Generate a batch of inferences."""
# model.forward normally channels prev_output_tokens into the decoder
# separately, but SequenceGenerator directly calls model.encoder
encoder_input = {
k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens"
}
emissions, padding = self.get_emissions(models, encoder_input)
return self.decode(emissions, padding)
def get_emissions(self, models, encoder_input):
"""Run encoder and normalize emissions"""
model = models[0]
all_encoder_out = [m(**encoder_input) for m in models]
if len(all_encoder_out) > 1:
if "encoder_out" in all_encoder_out[0]:
encoder_out = {
"encoder_out": sum(e["encoder_out"] for e in all_encoder_out)
/ len(all_encoder_out),
"encoder_padding_mask": all_encoder_out[0]["encoder_padding_mask"],
}
padding = encoder_out["encoder_padding_mask"]
else:
encoder_out = {
"logits": sum(e["logits"] for e in all_encoder_out)
/ len(all_encoder_out),
"padding_mask": all_encoder_out[0]["padding_mask"],
}
padding = encoder_out["padding_mask"]
else:
encoder_out = all_encoder_out[0]
padding = (
encoder_out["padding_mask"]
if "padding_mask" in encoder_out
else encoder_out["encoder_padding_mask"]
)
if hasattr(model, "get_logits"):
emissions = model.get_logits(encoder_out, normalize=True)
else:
emissions = model.get_normalized_probs(encoder_out, log_probs=True)
return (
emissions.cpu().float().transpose(0, 1),
padding.cpu() if padding is not None and padding.any() else None,
)
def decode_one(self, logits, padding):
from kaldi.matrix import Matrix
decoder = self.dec_cls(self.fst, self.decoder_options)
asr = self.rec_cls(
decoder, self.symbol_table, acoustic_scale=self.acoustic_scale
)
if padding is not None:
logits = logits[~padding]
mat = Matrix(logits.numpy())
out = asr.decode(mat)
if self.nbest > 1:
from kaldi.fstext import shortestpath
from kaldi.fstext.utils import (
convert_compact_lattice_to_lattice,
convert_lattice_to_std,
convert_nbest_to_list,
get_linear_symbol_sequence,
)
lat = out["lattice"]
sp = shortestpath(lat, nshortest=self.nbest)
sp = convert_compact_lattice_to_lattice(sp)
sp = convert_lattice_to_std(sp)
seq = convert_nbest_to_list(sp)
results = []
for s in seq:
_, o, w = get_linear_symbol_sequence(s)
words = list(self.output_symbols[z] for z in o)
results.append(
{
"tokens": words,
"words": words,
"score": w.value,
"emissions": logits,
}
)
return results
else:
words = out["text"].split()
return [
{
"tokens": words,
"words": words,
"score": out["likelihood"],
"emissions": logits,
}
]
def decode(self, emissions, padding):
if padding is None:
padding = [None] * len(emissions)
ret = list(
map(
lambda e, p: self.executor.submit(self.decode_one, e, p),
emissions,
padding,
)
)
return ret