File size: 16,402 Bytes
df82c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from typing import List, Optional, Tuple, Union

import numpy as np
from transformers import (AlbertModel, AlbertTokenizer, BartModel,
                          BartTokenizer, BertModel, BertTokenizer,
                          CamembertModel, CamembertTokenizer, CTRLModel,
                          CTRLTokenizer, DistilBertModel, DistilBertTokenizer,
                          GPT2Model, GPT2Tokenizer, LongformerModel,
                          LongformerTokenizer, OpenAIGPTModel,
                          OpenAIGPTTokenizer, PreTrainedModel,
                          PreTrainedTokenizer, RobertaModel, RobertaTokenizer,
                          TransfoXLModel, TransfoXLTokenizer, XLMModel,
                          XLMTokenizer, XLNetModel, XLNetTokenizer)

from extractive_summarizer.bert_parent import BertParent
from extractive_summarizer.cluster_features import ClusterFeatures
from extractive_summarizer.sentence_handler import SentenceHandler


class ModelProcessor(object):
    aggregate_map = {
        'mean': np.mean,
        'min': np.min,
        'median': np.median,
        'max': np.max,
    }

    def __init__(
        self,
        model: str = 'bert-large-uncased',
        custom_model: PreTrainedModel = None,
        custom_tokenizer: PreTrainedTokenizer = None,
        hidden: Union[List[int], int] = -2,
        reduce_option: str = 'mean',
        sentence_handler: SentenceHandler = SentenceHandler(),
        random_state: int = 12345,
        hidden_concat: bool = False,
        gpu_id: int = 0,
    ):
        """
        This is the parent Bert Summarizer model. New methods should implement this class.

        :param model: This parameter is associated with the inherit string parameters from the transformers library.
        :param custom_model: If you have a pre-trained model, you can add the model class here.
        :param custom_tokenizer: If you have a custom tokenizer, you can add the tokenizer here.
        :param hidden: This signifies which layer(s) of the BERT model you would like to use as embeddings.
        :param reduce_option: Given the output of the bert model, this param determines how you want to reduce results.
        :param sentence_handler: The handler to process sentences. If want to use coreference, instantiate and pass.
        CoreferenceHandler instance
        :param random_state: The random state to reproduce summarizations.
        :param hidden_concat: Whether or not to concat multiple hidden layers.
        :param gpu_id: GPU device index if CUDA is available. 
        """
        np.random.seed(random_state)
        self.model = BertParent(model, custom_model, custom_tokenizer, gpu_id)
        self.hidden = hidden
        self.reduce_option = reduce_option
        self.sentence_handler = sentence_handler
        self.random_state = random_state
        self.hidden_concat = hidden_concat

    def cluster_runner(
        self,
        content: List[str],
        ratio: float = 0.2,
        algorithm: str = 'kmeans',
        use_first: bool = True,
        num_sentences: int = None
    ) -> Tuple[List[str], np.ndarray]:
        """
        Runs the cluster algorithm based on the hidden state. Returns both the embeddings and sentences.

        :param content: Content list of sentences.
        :param ratio: The ratio to use for clustering.
        :param algorithm: Type of algorithm to use for clustering.
        :param use_first: Return the first sentence in the output (helpful for news stories, etc).
        :param num_sentences: Number of sentences to use for summarization.
        :return: A tuple of summarized sentences and embeddings
        """
        if num_sentences is not None:
            num_sentences = num_sentences if use_first else num_sentences

        hidden = self.model(
            content, self.hidden, self.reduce_option, hidden_concat=self.hidden_concat)
        hidden_args = ClusterFeatures(
            hidden, algorithm, random_state=self.random_state).cluster(ratio, num_sentences)

        if use_first:

            if not hidden_args:
                hidden_args.append(0)

            elif hidden_args[0] != 0:
                hidden_args.insert(0, 0)

        sentences = [content[j] for j in hidden_args]
        embeddings = np.asarray([hidden[j] for j in hidden_args])

        return sentences, embeddings

    def __run_clusters(
        self,
        content: List[str],
        ratio: float = 0.2,
        algorithm: str = 'kmeans',
        use_first: bool = True,
        num_sentences: int = None
    ) -> List[str]:
        """
        Runs clusters and returns sentences.

        :param content: The content of sentences.
        :param ratio: Ratio to use for for clustering.
        :param algorithm: Algorithm selection for clustering.
        :param use_first: Whether to use first sentence
        :param num_sentences: Number of sentences. Overrides ratio.
        :return: summarized sentences
        """
        sentences, _ = self.cluster_runner(
            content, ratio, algorithm, use_first, num_sentences)
        return sentences

    def __retrieve_summarized_embeddings(
        self,
        content: List[str],
        ratio: float = 0.2,
        algorithm: str = 'kmeans',
        use_first: bool = True,
        num_sentences: int = None
    ) -> np.ndarray:
        """
        Retrieves embeddings of the summarized sentences.

        :param content: The content of sentences.
        :param ratio: Ratio to use for for clustering.
        :param algorithm: Algorithm selection for clustering.
        :param use_first: Whether to use first sentence
        :return: Summarized embeddings
        """
        _, embeddings = self.cluster_runner(
            content, ratio, algorithm, use_first, num_sentences)
        return embeddings

    def calculate_elbow(
        self,
        body: str,
        algorithm: str = 'kmeans',
        min_length: int = 40,
        max_length: int = 600,
        k_max: int = None,
    ) -> List[float]:
        """
        Calculates elbow across the clusters.

        :param body: The input body to summarize.
        :param algorithm: The algorithm to use for clustering.
        :param min_length: The min length to use.
        :param max_length: The max length to use.
        :param k_max: The maximum number of clusters to search.
        :return: List of elbow inertia values.
        """
        sentences = self.sentence_handler(body, min_length, max_length)

        if k_max is None:
            k_max = len(sentences) - 1

        hidden = self.model(sentences, self.hidden,
                            self.reduce_option, hidden_concat=self.hidden_concat)
        elbow = ClusterFeatures(
            hidden, algorithm, random_state=self.random_state).calculate_elbow(k_max)

        return elbow

    def calculate_optimal_k(
        self,
        body: str,
        algorithm: str = 'kmeans',
        min_length: int = 40,
        max_length: int = 600,
        k_max: int = None,
    ):
        """
        Calculates the optimal Elbow K.

        :param body: The input body to summarize.
        :param algorithm: The algorithm to use for clustering.
        :param min_length: The min length to use.
        :param max_length: The max length to use.
        :param k_max: The maximum number of clusters to search.
        :return:
        """
        sentences = self.sentence_handler(body, min_length, max_length)

        if k_max is None:
            k_max = len(sentences) - 1

        hidden = self.model(sentences, self.hidden,
                            self.reduce_option, hidden_concat=self.hidden_concat)
        optimal_k = ClusterFeatures(
            hidden, algorithm, random_state=self.random_state).calculate_optimal_cluster(k_max)

        return optimal_k

    def run_embeddings(
        self,
        body: str,
        ratio: float = 0.2,
        min_length: int = 40,
        max_length: int = 600,
        use_first: bool = True,
        algorithm: str = 'kmeans',
        num_sentences: int = None,
        aggregate: str = None,
    ) -> Optional[np.ndarray]:
        """
        Preprocesses the sentences, runs the clusters to find the centroids, then combines the embeddings.

        :param body: The raw string body to process
        :param ratio: Ratio of sentences to use
        :param min_length: Minimum length of sentence candidates to utilize for the summary.
        :param max_length: Maximum length of sentence candidates to utilize for the summary
        :param use_first: Whether or not to use the first sentence
        :param algorithm: Which clustering algorithm to use. (kmeans, gmm)
        :param num_sentences: Number of sentences to use. Overrides ratio.
        :param aggregate: One of mean, median, max, min. Applied on zero axis
        :return: A summary embedding
        """
        sentences = self.sentence_handler(body, min_length, max_length)

        if sentences:
            embeddings = self.__retrieve_summarized_embeddings(
                sentences, ratio, algorithm, use_first, num_sentences)

            if aggregate is not None:
                assert aggregate in [
                    'mean', 'median', 'max', 'min'], "aggregate must be mean, min, max, or median"
                embeddings = self.aggregate_map[aggregate](embeddings, axis=0)

            return embeddings

        return None

    def run(
        self,
        body: str,
        ratio: float = 0.2,
        min_length: int = 40,
        max_length: int = 600,
        use_first: bool = True,
        algorithm: str = 'kmeans',
        num_sentences: int = None,
        return_as_list: bool = False
    ) -> Union[List, str]:
        """
        Preprocesses the sentences, runs the clusters to find the centroids, then combines the sentences.

        :param body: The raw string body to process
        :param ratio: Ratio of sentences to use
        :param min_length: Minimum length of sentence candidates to utilize for the summary.
        :param max_length: Maximum length of sentence candidates to utilize for the summary
        :param use_first: Whether or not to use the first sentence
        :param algorithm: Which clustering algorithm to use. (kmeans, gmm)
        :param num_sentences: Number of sentences to use (overrides ratio).
        :param return_as_list: Whether or not to return sentences as list.
        :return: A summary sentence
        """
        sentences = self.sentence_handler(body, min_length, max_length)

        if sentences:
            sentences = self.__run_clusters(
                sentences, ratio, algorithm, use_first, num_sentences)

        if return_as_list:
            return sentences
        else:
            return ' '.join(sentences)

    def __call__(
        self,
        body: str,
        ratio: float = 0.2,
        min_length: int = 40,
        max_length: int = 600,
        use_first: bool = True,
        algorithm: str = 'kmeans',
        num_sentences: int = None,
        return_as_list: bool = False,
    ) -> str:
        """
        (utility that wraps around the run function)
        Preprocesses the sentences, runs the clusters to find the centroids, then combines the sentences.

        :param body: The raw string body to process.
        :param ratio: Ratio of sentences to use.
        :param min_length: Minimum length of sentence candidates to utilize for the summary.
        :param max_length: Maximum length of sentence candidates to utilize for the summary.
        :param use_first: Whether or not to use the first sentence.
        :param algorithm: Which clustering algorithm to use. (kmeans, gmm)
        :param Number of sentences to use (overrides ratio).
        :param return_as_list: Whether or not to return sentences as list.
        :return: A summary sentence.
        """
        return self.run(
            body, ratio, min_length, max_length, algorithm=algorithm, use_first=use_first, num_sentences=num_sentences,
            return_as_list=return_as_list
        )


class Summarizer(ModelProcessor):

    def __init__(
        self,
        model: str = 'bert-large-uncased',
        custom_model: PreTrainedModel = None,
        custom_tokenizer: PreTrainedTokenizer = None,
        hidden: Union[List[int], int] = -2,
        reduce_option: str = 'mean',
        sentence_handler: SentenceHandler = SentenceHandler(),
        random_state: int = 12345,
        hidden_concat: bool = False,
        gpu_id: int = 0,
    ):
        """
        This is the main Bert Summarizer class.

        :param model: This parameter is associated with the inherit string parameters from the transformers library.
        :param custom_model: If you have a pre-trained model, you can add the model class here.
        :param custom_tokenizer: If you have a custom tokenizer, you can add the tokenizer here.
        :param hidden: This signifies which layer of the BERT model you would like to use as embeddings.
        :param reduce_option: Given the output of the bert model, this param determines how you want to reduce results.
        :param greedyness: associated with the neuralcoref library. Determines how greedy coref should be.
        :param language: Which language to use for training.
        :param random_state: The random state to reproduce summarizations.
        :param hidden_concat: Whether or not to concat multiple hidden layers.
        :param gpu_id: GPU device index if CUDA is available. 
        """

        super(Summarizer, self).__init__(
            model, custom_model, custom_tokenizer, hidden, reduce_option, sentence_handler, random_state, hidden_concat, gpu_id
        )


class TransformerSummarizer(ModelProcessor):
    """
    Another type of Summarizer class to choose keyword based model and tokenizer
    """

    MODEL_DICT = {
        'Bert': (BertModel, BertTokenizer),
        'OpenAIGPT': (OpenAIGPTModel, OpenAIGPTTokenizer),
        'GPT2': (GPT2Model, GPT2Tokenizer),
        'CTRL': (CTRLModel, CTRLTokenizer),
        'TransfoXL': (TransfoXLModel, TransfoXLTokenizer),
        'XLNet': (XLNetModel, XLNetTokenizer),
        'XLM': (XLMModel, XLMTokenizer),
        'DistilBert': (DistilBertModel, DistilBertTokenizer),
    }

    def __init__(
        self,
        transformer_type: str = 'Bert',
        transformer_model_key: str = 'bert-base-uncased',
        transformer_tokenizer_key: str = None,
        hidden: Union[List[int], int] = -2,
        reduce_option: str = 'mean',
        sentence_handler: SentenceHandler = SentenceHandler(),
        random_state: int = 12345,
        hidden_concat: bool = False,
        gpu_id: int = 0,
    ):
        """
        :param transformer_type: The Transformer type, such as Bert, GPT2, DistilBert, etc.
        :param transformer_model_key: The transformer model key. This is the directory for the model.
        :param transformer_tokenizer_key: The transformer tokenizer key. This is the tokenizer directory.
        :param hidden: The hidden output layers to use for the summarization.
        :param reduce_option: The reduce option, such as mean, max, min, median, etc.
        :param sentence_handler: The sentence handler class to process the raw text.
        :param random_state: The random state to use.
        :param hidden_concat: Deprecated hidden concat option.
        :param gpu_id: GPU device index if CUDA is available. 
        """
        try:
            self.MODEL_DICT['Roberta'] = (RobertaModel, RobertaTokenizer)
            self.MODEL_DICT['Albert'] = (AlbertModel, AlbertTokenizer)
            self.MODEL_DICT['Camembert'] = (CamembertModel, CamembertTokenizer)
            self.MODEL_DICT['Bart'] = (BartModel, BartTokenizer)
            self.MODEL_DICT['Longformer'] = (LongformerModel, LongformerTokenizer)
        except Exception:
            pass  # older transformer version

        model_clz, tokenizer_clz = self.MODEL_DICT[transformer_type]
        model = model_clz.from_pretrained(
            transformer_model_key, output_hidden_states=True)

        tokenizer = tokenizer_clz.from_pretrained(
            transformer_tokenizer_key if transformer_tokenizer_key is not None else transformer_model_key
        )

        super().__init__(
            None, model, tokenizer, hidden, reduce_option, sentence_handler, random_state, hidden_concat, gpu_id
        )