import os import torch import gradio as gr import time import clip import requests import csv import json import wget url_dict = {'clip_ViTL14_openimage_classifier_weights.pt': 'https://raw.githubusercontent.com/geonm/socratic-models-demo/master/prompts/clip_ViTL14_openimage_classifier_weights.pt', 'clip_ViTL14_place365_classifier_weights.pt': 'https://raw.githubusercontent.com/geonm/socratic-models-demo/master/prompts/clip_ViTL14_place365_classifier_weights.pt', 'clip_ViTL14_tencentml_classifier_weights.pt': 'https://raw.githubusercontent.com/geonm/socratic-models-demo/master/prompts/clip_ViTL14_tencentml_classifier_weights.pt'} os.makedirs('./prompts', exist_ok=True) for k, v in url_dict.items(): wget.download(v, out='./prompts') os.environ['CUDA_VISIBLE_DEVICES'] = '' API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom" HF_TOKEN = os.environ["HF_TOKEN"] def load_openimage_classnames(csv_path): csv_data = open(csv_path) csv_reader = csv.reader(csv_data) classnames = {idx: row[-1] for idx, row in enumerate(csv_reader)} return classnames def load_tencentml_classnames(txt_path): txt_data = open(txt_path) lines = txt_data.readlines() classnames = {idx: line.strip() for idx, line in enumerate(lines)} return classnames def build_simple_classifier(clip_model, text_list, template, device): with torch.no_grad(): texts = [template(text) for text in text_list] text_inputs = clip.tokenize(texts).to(device) text_features = clip_model.encode_text(text_inputs) text_features /= text_features.norm(dim=-1, keepdim=True) return text_features, {idx: text for idx, text in enumerate(text_list)} def load_models(): # build model and tokenizer model_dict = {} device = "cuda" if torch.cuda.is_available() else "cpu" print('\tLoading CLIP ViT-L/14') clip_model, clip_preprocess = clip.load("ViT-L/14", device=device) print('\tLoading precomputed zeroshot classifier') openimage_classifier_weights = torch.load('./prompts/clip_ViTL14_openimage_classifier_weights.pt', map_location=device).type(torch.FloatTensor) openimage_classnames = load_openimage_classnames('./prompts/openimage-classnames.csv') tencentml_classifier_weights = torch.load('./prompts/clip_ViTL14_tencentml_classifier_weights.pt', map_location=device).type(torch.FloatTensor) tencentml_classnames = load_tencentml_classnames('./prompts/tencent-ml-classnames.txt') place365_classifier_weights = torch.load('./prompts/clip_ViTL14_place365_classifier_weights.pt', map_location=device).type(torch.FloatTensor) place365_classnames = load_tencentml_classnames('./prompts/place365-classnames.txt') print('\tBuilding simple zeroshot classifier') img_types = ['photo', 'cartoon', 'sketch', 'painting'] ppl_texts = ['no people', 'people'] ifppl_texts = ['is one person', 'are two people', 'are three people', 'are several people', 'are many people'] imgtype_classifier_weights, imgtype_classnames = build_simple_classifier(clip_model, img_types, lambda c: f'This is a {c}.', device) ppl_classifier_weights, ppl_classnames = build_simple_classifier(clip_model, ppl_texts, lambda c: f'There are {c} in this photo.', device) ifppl_classifier_weights, ifppl_classnames = build_simple_classifier(clip_model, ifppl_texts, lambda c: f'There {c} in this photo.', device) model_dict['clip_model'] = clip_model model_dict['clip_preprocess'] = clip_preprocess model_dict['openimage_classifier_weights'] = openimage_classifier_weights model_dict['openimage_classnames'] = openimage_classnames model_dict['tencentml_classifier_weights'] = tencentml_classifier_weights model_dict['tencentml_classnames'] = tencentml_classnames model_dict['place365_classifier_weights'] = place365_classifier_weights model_dict['place365_classnames'] = place365_classnames model_dict['imgtype_classifier_weights'] = imgtype_classifier_weights model_dict['imgtype_classnames'] = imgtype_classnames model_dict['ppl_classifier_weights'] = ppl_classifier_weights model_dict['ppl_classnames'] = ppl_classnames model_dict['ifppl_classifier_weights'] = ifppl_classifier_weights model_dict['ifppl_classnames'] = ifppl_classnames model_dict['device'] = device return model_dict def drop_gpu(tensor): if torch.cuda.is_available(): return tensor.cpu().numpy() else: return tensor.numpy() def zeroshot_classifier(image): image_input = model_dict['clip_preprocess'](image).unsqueeze(0).to(model_dict['device']) with torch.no_grad(): image_features = model_dict['clip_model'].encode_image(image_input) image_features /= image_features.norm(dim=-1, keepdim=True) sim = (100.0 * image_features @ model_dict['openimage_classifier_weights'].T).softmax(dim=-1) openimage_scores, indices = [drop_gpu(tensor) for tensor in sim[0].topk(10)] openimage_classes = [model_dict['openimage_classnames'][idx] for idx in indices] sim = (100.0 * image_features @ model_dict['tencentml_classifier_weights'].T).softmax(dim=-1) tencentml_scores, indices = [drop_gpu(tensor) for tensor in sim[0].topk(10)] tencentml_classes = [model_dict['tencentml_classnames'][idx] for idx in indices] sim = (100.0 * image_features @ model_dict['place365_classifier_weights'].T).softmax(dim=-1) place365_scores, indices = [drop_gpu(tensor) for tensor in sim[0].topk(10)] place365_classes = [model_dict['place365_classnames'][idx] for idx in indices] sim = (100.0 * image_features @ model_dict['imgtype_classifier_weights'].T).softmax(dim=-1) imgtype_scores, indices = [drop_gpu(tensor) for tensor in sim[0].topk(len(model_dict['imgtype_classnames']))] imgtype_classes = [model_dict['imgtype_classnames'][idx] for idx in indices] sim = (100.0 * image_features @ model_dict['ppl_classifier_weights'].T).softmax(dim=-1) ppl_scores, indices = [drop_gpu(tensor) for tensor in sim[0].topk(len(model_dict['ppl_classnames']))] ppl_classes = [model_dict['ppl_classnames'][idx] for idx in indices] sim = (100.0 * image_features @ model_dict['ifppl_classifier_weights'].T).softmax(dim=-1) ifppl_scores, indices = [drop_gpu(tensor) for tensor in sim[0].topk(len(model_dict['ifppl_classnames']))] ifppl_classes = [model_dict['ifppl_classnames'][idx] for idx in indices] return image_features, openimage_scores, openimage_classes, tencentml_scores, tencentml_classes,\ place365_scores, place365_classes, imgtype_scores, imgtype_classes,\ ppl_scores, ppl_classes, ifppl_scores, ifppl_classes def generate_prompt(openimage_classes, tencentml_classes, place365_classes, imgtype_classes, ppl_classes, ifppl_classes): img_type = imgtype_classes[0] ppl_result = ppl_classes[0] if ppl_result == 'people': ppl_result = ifppl_classes[0] else: ppl_result = 'are %s' % ppl_result sorted_places = place365_classes object_list = '' for cls in tencentml_classes: object_list += f'{cls}, ' for cls in openimage_classes[:2]: object_list += f'{cls}, ' object_list = object_list[:-2] prompt_caption = f'''I am an intelligent image captioning bot. This image is a {img_type}. There {ppl_result}. I think this photo was taken at a {sorted_places[0]}, {sorted_places[1]}, or {sorted_places[2]}. I think there might be a {object_list} in this {img_type}. A creative short caption I can generate to describe this image is:''' #prompt_search = f'''Let's list keywords that include the following description. #This image is a {img_type}. There {ppl_result}. #I think this photo was taken at a {sorted_places[0]}, {sorted_places[1]}, or {sorted_places[2]}. #I think there might be a {object_list} in this {img_type}. #Relevant keywords which we can list and are seperated with comma are:''' return prompt_caption def generate_captions(prompt, num_captions=3): headers = {"Authorization": f"Bearer {HF_TOKEN}"} max_length = 16 seed = 42 sample_or_greedy = 'Greedy' input_sentence = prompt if sample_or_greedy == "Sample": parameters = { "max_new_tokens": max_length, "top_p": 0.7, "do_sample": True, "seed": seed, "early_stopping": False, "length_penalty": 0.0, "eos_token_id": None, } else: parameters = { "max_new_tokens": max_length, "do_sample": False, "seed": seed, "early_stopping": False, "length_penalty": 0.0, "eos_token_id": None, } payload = {"inputs": input_sentence, "parameters": parameters,"options" : {"use_cache": False}} bloom_results = [] for _ in range(num_captions): response = requests.post(API_URL, headers=headers, json=payload) output = response.json() generated_text = output[0]['generated_text'].replace(prompt, '').split('.')[0] + '.' bloom_results.append(generated_text) return bloom_results def sorting_texts(image_features, captions): with torch.no_grad(): text_inputs = clip.tokenize(captions).to(model_dict['device']) text_features = model_dict['clip_model'].encode_text(text_inputs) text_features /= text_features.norm(dim=-1, keepdim=True) sim = (100.0 * image_features @ text_features.T).softmax(dim=-1) scores, indices = [drop_gpu(tensor) for tensor in sim[0].topk(len(captions))] sorted_captions = [captions[idx] for idx in indices] return scores, sorted_captions def postprocess_results(scores, classes): scores = [float('%.4f' % float(val)) for val in scores] outputs = [] for score, cls in zip(scores, classes): outputs.append({'score': score, 'output': cls}) return outputs def image_captioning(image): start_time = time.time() image_features, openimage_scores, openimage_classes, tencentml_scores, tencentml_classes, place365_scores, place365_classes, imgtype_scores, imgtype_classes, ppl_scores, ppl_classes, ifppl_scores, ifppl_classes = zeroshot_classifier(image) end_zeroshot = time.time() prompt_caption = generate_prompt(openimage_classes, tencentml_classes, place365_classes, imgtype_classes, ppl_classes, ifppl_classes) generated_captions = generate_captions(prompt_caption, num_captions=1) end_bloom = time.time() caption_scores, sorted_captions = sorting_texts(image_features, generated_captions) output_dict = {} output_dict['inference_time'] = {'CLIP inference': end_zeroshot - start_time, 'BLOOM request': end_bloom - end_zeroshot} output_dict['generated_captions'] = postprocess_results(caption_scores, sorted_captions) output_dict['reasoning'] = {'openimage_results': postprocess_results(openimage_scores, openimage_classes), 'tencentml_results': postprocess_results(tencentml_scores, tencentml_classes), 'place365_results': postprocess_results(place365_scores, place365_classes), 'imgtype_results': postprocess_results(imgtype_scores, imgtype_classes), 'ppl_results': postprocess_results(ppl_scores, ppl_classes), 'ifppl_results': postprocess_results(ifppl_scores, ifppl_classes)} return output_dict if __name__ == '__main__': print('\tinit models') global model_dict model_dict = load_models() # define gradio demo inputs = [gr.inputs.Image(type="pil", label="Image") ] outputs = gr.outputs.JSON() title = "Socratic models for image captioning with BLOOM" description = """ ## Details **Without any fine-tuning**, we can do image captioning using Visual-Language models (e.g., CLIP, SLIP, ...) and Large language models (e.g., GPT, BLOOM, ...). In this demo, I choose BLOOM as the language model and CLIP ViT-L/14 as the visual-language model. The order of generating image caption is as follow: 1. Classify whether there are people, where the location is, and what objects are in the input image using the visual-language model. 2. Then, build a prompt using classified results. 3. Request BLOOM API with the prompt. This demo is slightly different with the original method proposed in the socratic model paper. I used not only tencent ml class names, but also OpenImage class names and I adopt BLOOM for the large language model If you want the demo using GPT3 from OpenAI, check https://github.com/geonm/socratic-models-demo. Demo is running on CPU. """ article = "
Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language
" examples = ['k21-1.jpg'] gr.Interface(image_captioning, inputs, outputs, title=title, description=description, article=article, examples=examples, #examples_per_page=50, ).launch(enable_queue=False)