File size: 27,817 Bytes
e9f3e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch VLE model."""


from typing import Optional, Tuple, Union

import torch
from torch import nn

from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ModelOutput
from transformers.models.auto.configuration_auto import AutoConfig
from transformers.models.auto.modeling_auto import AutoModel

from transformers.models.bert.modeling_bert import BertAttention, BertIntermediate, BertOutput, apply_chunking_to_forward
from transformers.models.clip.modeling_clip import CLIPOutput, CLIPVisionConfig, CLIPVisionModel
from transformers.models.deberta_v2.modeling_deberta_v2 import DebertaV2OnlyMLMHead
from .configuration_vle import VLEConfig
from dataclasses import dataclass

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "VLEConfig"


@dataclass
class VLEModelOutput(ModelOutput):

    pooler_output: torch.FloatTensor = None
    text_embeds: torch.FloatTensor = None
    image_embeds: torch.FloatTensor = None


@dataclass
class VLEForITMOutput(ModelOutput):

    loss: torch.FloatTensor = None
    logits: torch.FloatTensor = None

@dataclass
class VLEForPBCOutput(ModelOutput):

    loss: torch.FloatTensor = None
    logits: torch.FloatTensor = None

@dataclass
class VLEForMLMOutput(ModelOutput):

    loss: torch.FloatTensor = None
    logits: torch.FloatTensor = None

@dataclass
class VLEForVQAOutput(ModelOutput):

    loss : torch.FloatTensor = None
    logits: torch.FloatTensor = None

class ITMHead(nn.Module):
    def __init__(self, hidden_size):
        super().__init__()
        self.fc = nn.Linear(hidden_size, 2)

    def forward(self, x):
        x = self.fc(x)
        return x


def extend_position_embedding(state_dict, patch_size, after):
    """
    modify state_dict in-place for longer position embeddings
    """
    keys = {}
    for k,v in state_dict.items():
        if k.endswith('vision_model.embeddings.position_embedding.weight'):
            assert k not in keys
            keys['pe'] = (k,v)
        if k.endswith('vision_model.embeddings.position_ids'):
            assert k not in keys
            keys['pi'] = (k,v)

    pe_weight = keys['pe'][1]
    position_length_before = pe_weight.shape[0]
    embed_dim = pe_weight.shape[1]
    grid_before = position_length_before - 1
    position_length_after = (after // patch_size) ** 2 + 1 
    grid_after = position_length_after - 1

    new_pe_weight = pe_weight[1:].reshape((grid_before,grid_before,-1))
    new_pe_weight =  torch.nn.functional.interpolate(
        new_pe_weight.permute(2,0,1).unsqueeze(0),
        size = (grid_after,grid_after), mode = 'bicubic')
    new_pe_weight = new_pe_weight.squeeze(0).permute(1,2,0).reshape(grid_after*grid_after, -1)
    new_pe_weight = torch.cat((pe_weight[0:1],new_pe_weight), dim=0)
    assert new_pe_weight.shape == (grid_after*grid_after + 1, embed_dim)
    
    state_dict[keys['pe'][0]] = new_pe_weight
    state_dict[keys['pi'][0]] = torch.arange(grid_after*grid_after + 1).unsqueeze(0)
    return state_dict


class Pooler(nn.Module):
    def __init__(self, hidden_size):
        super().__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertCrossLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = BertAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        self.crossattention = BertAttention(config)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(
        self,
        hidden_states,
        encoder_hidden_states,
        attention_mask=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = None #past_key_value[:2] if past_key_value is not None else None
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask=None,
            output_attentions=output_attentions,
            past_key_value=None,
        )
        attention_output = self_attention_outputs[0]

        # if decoder, the last output is tuple of self-attn cache
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
        cross_attention_outputs = self.crossattention(
            attention_output,
            attention_mask,
            None,
            encoder_hidden_states,
            encoder_attention_mask,
            None,
            output_attentions,
        )
        attention_output = cross_attention_outputs[0]
        outputs = outputs + cross_attention_outputs[1:]  # add cross attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class VLEPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization.
    """

    config_class = VLEConfig
    base_model_prefix = "vle"
    supports_gradient_checkpointing = False
    _keys_to_ignore_on_load_missing = [r"position_ids"]

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
    ''' TODO checkpointing
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, BertEncoder):
            module.gradient_checkpointing = value
    '''

class VLEModel(VLEPreTrainedModel):
    def __init__(
        self,
        config: Optional[VLEConfig] = None,
        vision_model: Optional[PreTrainedModel] = None,
        text_model: Optional[PreTrainedModel] = None,
    ):

        if config is None and (vision_model is None or text_model is None):
            raise ValueError("Either a configuration or an vision and a text model has to be provided")

        if config is None:
            config = VLEConfig(vision_model.config, text_model.config)
        else:
            if not isinstance(config, self.config_class):
                raise ValueError(f"config: {config} has to be of type {self.config_class}")

        # initialize with config
        super().__init__(config)

        if vision_model is None:
            if isinstance(config.vision_config, CLIPVisionConfig):
                vision_model = CLIPVisionModel(config.vision_config)
            else:
                vision_model = AutoModel.from_config(config.vision_config)

        if text_model is None:
            text_model = AutoModel.from_config(config.text_config)

        self.vision_model = vision_model
        self.text_model = text_model

        # make sure that the individual model's config refers to the shared config
        # so that the updates to the config will be synced
        self.vision_model.config = self.config.vision_config
        self.text_model.config = self.config.text_config

        self.vision_embed_dim = config.vision_config.hidden_size
        self.text_embed_dim = config.text_config.hidden_size
        self.coattention_dim = config.hidden_size

        # add projection layers
        self.text_projection_layer = nn.Linear(self.text_embed_dim, self.coattention_dim)
        self.image_projection_layer = nn.Linear(self.vision_embed_dim, self.coattention_dim)

        #self.logit_scale = nn.Parameter(torch.ones([]) * self.config.logit_scale_init_value)
        self.token_type_embeddings = nn.Embedding(config.num_token_types, config.hidden_size)

        self.cross_modal_image_layers = nn.ModuleList([BertCrossLayer(config) for _ in range(config.num_hidden_layers)])
        self.cross_modal_text_layers = nn.ModuleList([BertCrossLayer(config) for _ in range(config.num_hidden_layers)])
        self.cross_modal_image_pooler = Pooler(config.hidden_size)
        self.cross_modal_text_pooler = Pooler(config.hidden_size)

        # Initialize weights and apply final processing
        self.token_type_embeddings.apply(self._init_weights)
        self.cross_modal_image_layers.apply(self._init_weights)
        self.cross_modal_text_layers.apply(self._init_weights)
        self.cross_modal_image_pooler.apply(self._init_weights)
        self.cross_modal_text_pooler.apply(self._init_weights)
        if hasattr(self,"text_projection_layer"):
            self.text_projection_layer.apply(self._init_weights)
        if hasattr(self,"image_projection_layer"):
            self.image_projection_layer.apply(self._init_weights)


    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        patch_ids = None,
        return_loss: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], VLEModelOutput]:

        return_dict = return_dict if return_dict is not None else self.config.return_dict

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            return_dict=return_dict,
        )

        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            return_dict=return_dict,
        )

        image_embeds = self.vision_model.vision_model.post_layernorm(vision_outputs[0])  # last_hidden_state
        image_embeds = self.image_projection_layer(image_embeds)

        text_embeds = text_outputs[0]  # last_hidden_state
        text_embeds = self.text_projection_layer(text_embeds)

        if patch_ids is not None:
            raise NotImplementedError #TODO

        image_masks = torch.ones((image_embeds.size(0), image_embeds.size(1)), dtype=torch.long, device=image_embeds.device)
        extend_image_masks = self.text_model.get_extended_attention_mask(image_masks, image_masks.size())
        image_embeds = image_embeds + self.token_type_embeddings(torch.full_like(image_masks, 1)) # image_token_type_idx=1 TODO use_vcr_token_type_embedding

        extend_text_masks = self.text_model.get_extended_attention_mask(attention_mask, attention_mask.size())
        text_embeds = text_embeds  + self.token_type_embeddings(torch.zeros_like(attention_mask))

        x, y = text_embeds, image_embeds
        for text_layer, image_layer in zip(self.cross_modal_text_layers, self.cross_modal_image_layers):
            x1 = text_layer(x, y, extend_text_masks, extend_image_masks)
            y1 = image_layer(y, x, extend_image_masks, extend_text_masks)
            x, y = x1[0], y1[0]

        text_embeds, image_embeds = x, y
        text_pooler_output = self.cross_modal_text_pooler(x)
        image_pooler_output =  self.cross_modal_image_pooler(y)
        pooler_output = torch.cat([text_pooler_output, image_pooler_output], dim=-1)

        if not return_dict:
            output = (pooler_output, text_embeds, image_embeds)
            return output
        return VLEModelOutput(
            pooler_output = pooler_output,
            text_embeds = text_embeds,
            image_embeds = image_embeds
        )


    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        # At the moment fast initialization is not supported
        # for composite models
        kwargs["_fast_init"] = False
        return super().from_pretrained(*args, **kwargs)

    @classmethod
    def from_vision_text_pretrained(
        cls,
        vision_model_name_or_path: str = None,
        text_model_name_or_path: str = None,
        *model_args,
        **kwargs,
    ) -> PreTrainedModel:

        kwargs_vision = {
            argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
        }

        kwargs_text = {
            argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
        }

        # remove vision, text kwargs from kwargs
        for key in kwargs_vision.keys():
            del kwargs["vision_" + key]
        for key in kwargs_text.keys():
            del kwargs["text_" + key]

        # Load and initialize the vision and text model
        vision_model = kwargs_vision.pop("model", None)
        if vision_model is None:
            if vision_model_name_or_path is None:
                raise ValueError(
                    "If `vision_model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
                )

            if "config" not in kwargs_vision:
                vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)

            if vision_config.model_type == "clip":
                kwargs_vision["config"] = vision_config.vision_config
                vision_model = CLIPVisionModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
            else:
                kwargs_vision["config"] = vision_config
                vision_model = AutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)

        text_model = kwargs_text.pop("model", None)
        if text_model is None:
            if text_model_name_or_path is None:
                raise ValueError(
                    "If `text_model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
                )

            if "config" not in kwargs_text:
                text_config = AutoConfig.from_pretrained(text_model_name_or_path)
                kwargs_text["config"] = text_config

            text_model = AutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)

        # instantiate config with corresponding kwargs
        config = VLEConfig(vision_model.config, text_model.config, **kwargs)

        # init model
        model = cls(config=config, vision_model=vision_model, text_model=text_model)

        # the projection layers are always newly initialized when loading the model
        # using pre-trained vision and text model.
        logger.warning(
            "The coattention layers and projection layers are newly initialized. You should probably TRAIN this model on a down-stream task to be"
            " able to use it for predictions and inference."
        )
        return model


    def get_text_features(
        self,
        input_ids=None,
        attention_mask=None,
        position_ids=None,
        token_type_ids=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            #output_attentions=output_attentions,
            #output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        return text_outputs[0] # last_hidden_state

    def get_image_features(
        self,
        pixel_values=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Returns:
            image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
            applying the projection layer to the pooled output of [`CLIPVisionModel`].

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import VLEModel, AutoImageProcessor

        >>> model = VLEModel.from_pretrained("clip-italian/clip-italian")
        >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = image_processor(images=image, return_tensors="pt")

        >>> image_features = model.get_image_features(**inputs)
        ```"""
        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            #output_attentions=output_attentions,
            #output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        last_hidden_state = self.vision_model.vision_model.post_layernorm(vision_outputs[0])
        return last_hidden_state
    def get_input_embeddings(self):
        return self.text_model.embeddings.word_embeddings

    def set_input_embeddings(self, new_embeddings):
        self.text_model.embeddings.word_embeddings = new_embeddings

class VLEForVQA(VLEPreTrainedModel):
    def __init__(
        self,
        config: Optional[VLEConfig] = None,
        vision_model: Optional[PreTrainedModel] = None,
        text_model: Optional[PreTrainedModel] = None,
    ):
        super().__init__(config)
        self.vle = VLEModel(config, vision_model, text_model)

        hidden_size = config.hidden_size
        self.num_vqa_labels = len(self.config.id2label)
        self.vqa_classifier = nn.Sequential(
                                    nn.Linear(hidden_size * 2, hidden_size * 2),
                                    nn.LayerNorm(hidden_size * 2),
                                    nn.GELU(),
                                    nn.Linear(hidden_size * 2, self.num_vqa_labels),
        )
        self.vqa_classifier.apply(self._init_weights)
    
    def forward(self,
                input_ids: Optional[torch.LongTensor],
                pixel_values: Optional[torch.FloatTensor],
                attention_mask: Optional[torch.Tensor] = None,
                position_ids: Optional[torch.LongTensor] = None,
                token_type_ids: Optional[torch.LongTensor] = None,
                patch_ids = None,
                vqa_labels = None,
                vqa_scores = None,
                return_loss: Optional[bool] = None,
                return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], VLEForVQAOutput]:

        return_dict = return_dict if return_dict is not None else self.config.return_dict

        vle_output = self.vle(
            input_ids = input_ids,
            pixel_values = pixel_values,
            attention_mask = attention_mask,
            position_ids = position_ids,
            token_type_ids = token_type_ids,
            patch_ids = patch_ids,)
        pooler_output = vle_output[0]
        vqa_logits = self.vqa_classifier(pooler_output)


        vqa_loss = None
        if return_loss and vqa_labels is not None and vqa_scores is not None:
            vqa_targets = torch.zeros(len(vqa_logits), self.num_vqa_labels,device=vqa_logits.device)
            for i, (_label, _score) in enumerate(zip(vqa_labels, vqa_scores)):
                for l, s in zip(_label, _score):
                    vqa_targets[i, l] = s
            vqa_loss = F.binary_cross_entropy_with_logits(vqa_logits, vqa_targets) * vqa_targets.shape[1]
            # https://github.com/jnhwkim/ban-vqa/blob/master/train.py#L19

        if not return_dict:
            output = (vqa_logits,)
            return ((vqa_loss,) + output) if vqa_loss is not None else output
        return VLEForVQAOutput(
            loss = vqa_loss,
            logits = vqa_logits
        )


class VLEForITM(VLEPreTrainedModel):
    def __init__(
        self,
        config: Optional[VLEConfig] = None,
        vision_model: Optional[PreTrainedModel] = None,
        text_model: Optional[PreTrainedModel] = None,
    ):
        super().__init__(config)
        self.vle = VLEModel(config, vision_model, text_model)

        hidden_size = config.hidden_size
        self.itm_score = ITMHead(hidden_size*2)
        self.itm_score.apply(self._init_weights)

    def forward(self,
                input_ids: Optional[torch.LongTensor],
                pixel_values: Optional[torch.FloatTensor],
                attention_mask: Optional[torch.Tensor] = None,
                position_ids: Optional[torch.LongTensor] = None,
                token_type_ids: Optional[torch.LongTensor] = None,
                patch_ids = None,
                itm_labels = None,
                return_loss: Optional[bool] = None,
                return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], VLEForITMOutput]:

        return_dict = return_dict if return_dict is not None else self.config.return_dict

        vle_output = self.vle(
            input_ids = input_ids,
            pixel_values = pixel_values,
            attention_mask = attention_mask,
            position_ids = position_ids,
            token_type_ids = token_type_ids,
            patch_ids = patch_ids,)
        pooler_output = vle_output[0]

        itm_logits = self.itm_score(pooler_output)
        itm_loss = None
        if return_loss and itm_labels is not None:
            itm_loss = nn.functional.cross_entropy(itm_logits, torch.tensor(itm_labels).long().to(itm_logits.device))
        if not return_dict:
            output = (itm_logits,)
            return ((itm_loss,) + output) if itm_loss is not None else output
        return VLEForITMOutput(loss = itm_loss, logits = itm_logits)


class VLEForPBC(VLEPreTrainedModel):
    def __init__(
        self,
        config: Optional[VLEConfig] = None,
        vision_model: Optional[PreTrainedModel] = None,
        text_model: Optional[PreTrainedModel] = None,
    ):
        super().__init__(config)
        self.vle = VLEModel(config, vision_model, text_model)

        hidden_size = config.hidden_size
        self.pbc_classifier = nn.Sequential(
                nn.Linear(hidden_size, hidden_size),
                nn.LayerNorm(hidden_size),
                nn.GELU(),
                nn.Linear(hidden_size, 2),
            )
        self.pbc_classifier.apply(self._init_weights)
    
    def forward(self,
                input_ids: Optional[torch.LongTensor],
                pixel_values: Optional[torch.FloatTensor],
                attention_mask: Optional[torch.Tensor] = None,
                position_ids: Optional[torch.LongTensor] = None,
                token_type_ids: Optional[torch.LongTensor] = None,
                patch_ids = None,
                pbc_labels = None,
                return_loss: Optional[bool] = None,
                return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], VLEForPBCOutput]:

        return_dict = return_dict if return_dict is not None else self.config.return_dict

        vle_output = self.vle(
            input_ids = input_ids,
            pixel_values = pixel_values,
            attention_mask = attention_mask,
            position_ids = position_ids,
            token_type_ids = token_type_ids,
            patch_ids = patch_ids,)
        image_embeds = vle_output['image_embeds']
        pbc_logits = self.pbc_classifier(image_embeds[:,1:,:])

        pbc_loss = None
        if return_loss and pbc_labels is not None:
            pbc_loss = F.cross_entropy(pbc_logits, torch.tensor(pbc_labels).long().to(pbc_logits.device))

        if not return_dict:
            output = (pbc_logits,)
            return ((pbc_loss,) + output) if pbc_loss is not None else output
        return VLEForPBCOutput(loss = pbc_loss, logits = pbc_logits)


class VLEForMLM(VLEPreTrainedModel):
    _keys_to_ignore_on_load_missing = [r"mlm_score.1.predictions.decoder.weight",r"mlm_score.1.predictions.decoder.bias"]
    def __init__(
        self,
        config: Optional[VLEConfig] = None,
        vision_model: Optional[PreTrainedModel] = None,
        text_model: Optional[PreTrainedModel] = None,
    ):
        super().__init__(config)
        self.vle = VLEModel(config, vision_model, text_model)

        hidden_size = config.hidden_size
        mlm_head = DebertaV2OnlyMLMHead(self.config.text_config)
        mlm_transform = nn.Linear(hidden_size, self.config.text_config.hidden_size)
        self.mlm_score = nn.Sequential(
                        mlm_transform,
                        mlm_head,
                    )

    def forward(self,
                input_ids: Optional[torch.LongTensor],
                pixel_values: Optional[torch.FloatTensor],
                attention_mask: Optional[torch.Tensor] = None,
                position_ids: Optional[torch.LongTensor] = None,
                token_type_ids: Optional[torch.LongTensor] = None,
                patch_ids = None,
                mlm_labels = None,
                return_loss: Optional[bool] = None,
                return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], VLEForMLMOutput]:

        return_dict = return_dict if return_dict is not None else self.config.return_dict

        vle_output = self.vle(
            input_ids = input_ids,
            pixel_values = pixel_values,
            attention_mask = attention_mask,
            position_ids = position_ids,
            token_type_ids = token_type_ids,
            patch_ids = patch_ids,)
        text_feats = vle_output.text_embeds

        mlm_logits = self.mlm_score(text_feats)
        mlm_loss = None
        if return_loss and mlm_labels is not None:
            mlm_loss = F.cross_entropy(
                mlm_logits.view(-1, self.config.text_config.vocab_size),
                mlm_labels.view(-1),
                ignore_index=-100,
            )
        if not return_dict:
            output = (mlm_logits,)
            return ((mlm_loss,) + output) if mlm_loss is not None else output
        return VLEForMLMOutput(loss = mlm_loss, logits = mlm_logits)


    def get_output_embeddings(self):
        return self.mlm_score[1].predictions.decoder

    def set_output_embeddings(self, new_embeddings):
        self.mlm_score[1].predictions.decoder = new_embeddings