Cahya Wirawan
move to Dockerfile
7191ca8
raw
history blame
6.27 kB
import torch
import gradio as gr
from transformers import pipeline
import tempfile
from neon_tts_plugin_coqui import CoquiTTS
from datetime import datetime
import time
import psutil
from mtranslate import translate
from gpuinfo import GPUInfo
MODEL_NAME = "cahya/whisper-medium-id" # this always needs to stay in line 8 :D sorry for the hackiness
whisper_models = {
"Indonesian Whisper Tiny": {
"name": "cahya/whisper-tiny-id",
"pipe": None,
},
"Indonesian Whisper Small": {
"name": "cahya/whisper-small-id",
"pipe": None,
},
"Indonesian Whisper Medium": {
"name": "cahya/whisper-medium-id",
"pipe": None,
},
"OpenAI Whisper Medium": {
"name": "openai/whisper-medium",
"pipe": None,
},
}
lang = "id"
title = "Indonesian Whisperer"
description = "Cross Language Speech to Speech (Indonesian/English to 25 other languages) using OpenAI Whisper and Coqui TTS"
info = "This application uses [Indonesian Whisperer Medium](https://huggingface.co/cahya/whisper-medium-id) model"
badge = "https://img.shields.io/badge/Powered%20by-Indonesian%20Whisperer-red"
visitors = "https://visitor-badge.glitch.me/badge?page_id=cahya-hf-indonesian-whisperer"
languages = {
'English': 'en',
'German': 'de',
'Spanish': 'es',
'French': 'fr',
'Portuguese': 'pt',
'Polish': 'pl',
'Dutch': 'nl',
'Swedish': 'sv',
'Italian': 'it',
'Finnish': 'fi',
'Ukrainian': 'uk',
'Greek': 'el',
'Czech': 'cs',
'Romanian': 'ro',
'Danish': 'da',
'Hungarian': 'hu',
'Croatian': 'hr',
'Bulgarian': 'bg',
'Lithuanian': 'lt',
'Slovak': 'sk',
'Latvian': 'lv',
'Slovenian': 'sl',
'Estonian': 'et',
'Maltese': 'mt'
}
device = 0 if torch.cuda.is_available() else "cpu"
for model in whisper_models:
whisper_models[model]["pipe"] = pipeline(
task="automatic-speech-recognition",
model=whisper_models[model]["name"],
chunk_length_s=30,
device=device,
)
whisper_models[model]["pipe"].model.config.forced_decoder_ids = \
whisper_models[model]["pipe"].tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
def transcribe(pipe, microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
text = pipe(file)["text"]
return warn_output + text
LANGUAGES = list(CoquiTTS.langs.keys())
default_lang = "en"
coquiTTS = CoquiTTS()
def process(language: str, model: str, audio_microphone: str, audio_file: str):
language = languages[language]
pipe = whisper_models[model]["pipe"]
time_start = time.time()
print(f"### {datetime.now()} TTS", language, audio_file)
transcription = transcribe(pipe, audio_microphone, audio_file)
print(f"### {datetime.now()} transcribed:", transcription)
translation = translate(transcription, language, "id")
# return output
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
coquiTTS.get_tts(translation, fp, speaker={"language": language})
time_end = time.time()
time_diff = time_end - time_start
memory = psutil.virtual_memory()
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
system_info = f"""
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
*Processing time: {time_diff:.5} seconds.*
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
"""
print(f"### {datetime.now()} fp.name:", fp.name)
return transcription, translation, fp.name, system_info
with gr.Blocks() as blocks:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>"
+ title
+ "</h1>")
gr.Markdown(description)
with gr.Row(): # equal_height=False
with gr.Column(): # variant="panel"
audio_microphone = gr.Audio(label="Microphone", source="microphone", type="filepath", optional=True)
audio_upload = gr.Audio(label="Upload", source="upload", type="filepath", optional=True)
language = gr.Dropdown([lang for lang in languages.keys()], label="Target Language", value="English")
model = gr.Dropdown([model for model in whisper_models.keys()],
label="Whisper Model", value="Indonesian Whisper Medium")
with gr.Row(): # mobile_collapse=False
submit = gr.Button("Submit", variant="primary")
examples = gr.Examples(examples=["data/Jokowi - 2022.mp3", "data/Soekarno - 1963.mp3", "data/JFK.mp3"],
label="Examples", inputs=[audio_upload])
with gr.Column():
text_source = gr.Textbox(label="Source Language")
text_target = gr.Textbox(label="Target Language")
audio = gr.Audio(label="Target Audio", interactive=False)
memory = psutil.virtual_memory()
system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
gr.Markdown(info)
gr.Markdown("<center>"
+ f'<a href="https://github.com/cahya-wirawan/indonesian-whisperer"><img src={badge} alt="visitors badge"/></a>'
+ f'<img src={visitors} alt="visitors badge"/>'
+ "</center>")
# actions
submit.click(
process,
[language, model, audio_microphone, audio_upload],
[text_source, text_target, audio, system_info],
)
blocks.launch()