|
import gradio as gr |
|
import matplotlib.pyplot as plt |
|
from matplotlib import ticker |
|
from sklearn import manifold, datasets |
|
from mpl_toolkits.mplot3d import Axes3D |
|
|
|
|
|
def compare_manifold_learning(methods, n_samples, n_neighbors, n_components, perplexity): |
|
S_points, S_color = datasets.make_s_curve(n_samples, random_state=0) |
|
transformed_data = [] |
|
|
|
if len(methods) == 1: |
|
method = methods[0] |
|
manifold_method = { |
|
"Locally Linear Embeddings Standard": manifold.LocallyLinearEmbedding(method="standard", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0), |
|
"Locally Linear Embeddings LTSA": manifold.LocallyLinearEmbedding(method="ltsa", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0), |
|
"Locally Linear Embeddings Hessian": manifold.LocallyLinearEmbedding(method="hessian", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0), |
|
"Locally Linear Embeddings Modified": manifold.LocallyLinearEmbedding(method="modified", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0), |
|
"Isomap": manifold.Isomap(n_neighbors=n_neighbors, n_components=n_components, p=1), |
|
"MultiDimensional Scaling": manifold.MDS(n_components=n_components, max_iter=50, n_init=4, random_state=0, normalized_stress=False), |
|
"Spectral Embedding": manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors), |
|
"T-distributed Stochastic Neighbor Embedding": manifold.TSNE(n_components=n_components, perplexity=perplexity, init="random", n_iter=250, random_state=0) |
|
}[method] |
|
S_transformed = manifold_method.fit_transform(S_points) |
|
transformed_data.append(S_transformed) |
|
else: |
|
for method in methods: |
|
manifold_method = { |
|
"Locally Linear Embeddings Standard": manifold.LocallyLinearEmbedding(method="standard", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0), |
|
"Locally Linear Embeddings LTSA": manifold.LocallyLinearEmbedding(method="ltsa", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0), |
|
"Locally Linear Embeddings Hessian": manifold.LocallyLinearEmbedding(method="hessian", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0), |
|
"Locally Linear Embeddings Modified": manifold.LocallyLinearEmbedding(method="modified", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0), |
|
"Isomap": manifold.Isomap(n_neighbors=n_neighbors, n_components=n_components, p=1), |
|
"MultiDimensional Scaling": manifold.MDS(n_components=n_components, max_iter=50, n_init=4, random_state=0, normalized_stress=False), |
|
"Spectral Embedding": manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors), |
|
"T-distributed Stochastic Neighbor Embedding": manifold.TSNE(n_components=n_components, perplexity=perplexity, init="random", n_iter=250, random_state=0) |
|
}[method] |
|
S_transformed = manifold_method.fit_transform(S_points) |
|
transformed_data.append(S_transformed) |
|
|
|
fig, axs = plt.subplots(1, len(transformed_data), figsize=(6 * len(transformed_data), 6)) |
|
fig.suptitle("Manifold Learning Comparison", fontsize=16) |
|
|
|
if len(methods) == 1: |
|
ax = axs |
|
method = methods[0] |
|
data = transformed_data[0] |
|
ax.scatter(data[:, 0], data[:, 1], c=S_color, cmap=plt.cm.Spectral) |
|
ax.set_title(f"Method: {method}") |
|
ax.axis("tight") |
|
ax.axis("off") |
|
ax.xaxis.set_major_locator(ticker.NullLocator()) |
|
ax.yaxis.set_major_locator(ticker.NullLocator()) |
|
else: |
|
for ax, method, data in zip(axs, methods, transformed_data): |
|
ax.scatter(data[:, 0], data[:, 1], c=S_color, cmap=plt.cm.Spectral) |
|
ax.set_title(f"Method: {method}") |
|
ax.axis("tight") |
|
ax.axis("off") |
|
ax.xaxis.set_major_locator(ticker.NullLocator()) |
|
ax.yaxis.set_major_locator(ticker.NullLocator()) |
|
|
|
plt.tight_layout() |
|
plt.savefig("plot.png") |
|
plt.close() |
|
|
|
return "plot.png" |
|
|
|
method_options = [ |
|
"Locally Linear Embeddings Standard", |
|
"Locally Linear Embeddings LTSA", |
|
"Locally Linear Embeddings Hessian", |
|
"Locally Linear Embeddings Modified", |
|
"Isomap", |
|
"MultiDimensional Scaling", |
|
"Spectral Embedding", |
|
"T-distributed Stochastic Neighbor Embedding" |
|
] |
|
|
|
inputs = [ |
|
gr.components.CheckboxGroup(method_options, label="Manifold Learning Methods"), |
|
gr.inputs.Slider(default=1500, label="Number of Samples", maximum=5000), |
|
gr.inputs.Slider(default=12, label="Number of Neighbors"), |
|
gr.inputs.Slider(default=2, label="Number of Components"), |
|
gr.inputs.Slider(default=30, label="Perplexity (for t-SNE)") |
|
] |
|
|
|
gr.Interface( |
|
fn=compare_manifold_learning, |
|
inputs=inputs, |
|
outputs="image", |
|
examples=[ |
|
[method_options, 1500, 12, 2, 30] |
|
], |
|
title="Manifold Learning Comparison", |
|
description="This code demonstrates a comparison of manifold learning methods using the S-curve dataset. Manifold learning techniques aim to uncover the underlying structure and relationships within high-dimensional data by projecting it onto a lower-dimensional space. This comparison allows you to explore the effects of different methods on the dataset. See the original scikit-learn example here: https://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html" |
|
).launch() |
|
|