webui / modules_forge /forge_loader.py
camchanimation's picture
Upload folder using huggingface_hub
7dd6673 verified
import torch
import contextlib
from ldm_patched.modules import model_management
from ldm_patched.modules import model_detection
from ldm_patched.modules.sd import VAE, CLIP, load_model_weights
import ldm_patched.modules.model_patcher
import ldm_patched.modules.utils
import ldm_patched.modules.clip_vision
from omegaconf import OmegaConf
from modules.sd_models_config import find_checkpoint_config
from modules.shared import cmd_opts
from modules import sd_hijack
from modules.sd_models_xl import extend_sdxl
from ldm.util import instantiate_from_config
from modules_forge import forge_clip
from modules_forge.unet_patcher import UnetPatcher
from ldm_patched.modules.model_base import model_sampling, ModelType
import open_clip
from transformers import CLIPTextModel, CLIPTokenizer
class FakeObject:
def __init__(self, *args, **kwargs):
super().__init__()
self.visual = None
return
def eval(self, *args, **kwargs):
return self
def parameters(self, *args, **kwargs):
return []
class ForgeSD:
def __init__(self, unet, clip, vae, clipvision):
self.unet = unet
self.clip = clip
self.vae = vae
self.clipvision = clipvision
def shallow_copy(self):
return ForgeSD(
self.unet,
self.clip,
self.vae,
self.clipvision
)
@contextlib.contextmanager
def no_clip():
backup_openclip = open_clip.create_model_and_transforms
backup_CLIPTextModel = CLIPTextModel.from_pretrained
backup_CLIPTokenizer = CLIPTokenizer.from_pretrained
try:
open_clip.create_model_and_transforms = lambda *args, **kwargs: (FakeObject(), None, None)
CLIPTextModel.from_pretrained = lambda *args, **kwargs: FakeObject()
CLIPTokenizer.from_pretrained = lambda *args, **kwargs: FakeObject()
yield
finally:
open_clip.create_model_and_transforms = backup_openclip
CLIPTextModel.from_pretrained = backup_CLIPTextModel
CLIPTokenizer.from_pretrained = backup_CLIPTokenizer
return
def load_checkpoint_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
sd_keys = sd.keys()
clip = None
clipvision = None
vae = None
model = None
model_patcher = None
clip_target = None
parameters = ldm_patched.modules.utils.calculate_parameters(sd, "model.diffusion_model.")
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = model_management.get_torch_device()
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
class WeightsLoader(torch.nn.Module):
pass
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype)
model_config.set_manual_cast(manual_cast_dtype)
if model_config is None:
raise RuntimeError("ERROR: Could not detect model type")
if model_config.clip_vision_prefix is not None:
if output_clipvision:
clipvision = ldm_patched.modules.clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
if output_model:
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
offload_device = model_management.unet_offload_device()
model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
model.load_model_weights(sd, "model.diffusion_model.")
if output_vae:
vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
vae = VAE(sd=vae_sd)
if output_clip:
w = WeightsLoader()
clip_target = model_config.clip_target()
if clip_target is not None:
clip = CLIP(clip_target, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
sd = model_config.process_clip_state_dict(sd)
load_model_weights(w, sd)
left_over = sd.keys()
if len(left_over) > 0:
print("left over keys:", left_over)
if output_model:
model_patcher = UnetPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
if inital_load_device != torch.device("cpu"):
print("loaded straight to GPU")
model_management.load_model_gpu(model_patcher)
return ForgeSD(model_patcher, clip, vae, clipvision)
@torch.no_grad()
def load_model_for_a1111(timer, checkpoint_info=None, state_dict=None):
a1111_config_filename = find_checkpoint_config(state_dict, checkpoint_info)
a1111_config = OmegaConf.load(a1111_config_filename)
timer.record("forge solving config")
if hasattr(a1111_config.model.params, 'network_config'):
a1111_config.model.params.network_config.target = 'modules_forge.forge_loader.FakeObject'
if hasattr(a1111_config.model.params, 'unet_config'):
a1111_config.model.params.unet_config.target = 'modules_forge.forge_loader.FakeObject'
if hasattr(a1111_config.model.params, 'first_stage_config'):
a1111_config.model.params.first_stage_config.target = 'modules_forge.forge_loader.FakeObject'
with no_clip():
sd_model = instantiate_from_config(a1111_config.model)
timer.record("forge instantiate config")
forge_objects = load_checkpoint_guess_config(
state_dict,
output_vae=True,
output_clip=True,
output_clipvision=True,
embedding_directory=cmd_opts.embeddings_dir,
output_model=True
)
sd_model.forge_objects = forge_objects
sd_model.forge_objects_original = forge_objects.shallow_copy()
sd_model.forge_objects_after_applying_lora = forge_objects.shallow_copy()
timer.record("forge load real models")
sd_model.first_stage_model = forge_objects.vae.first_stage_model
sd_model.model.diffusion_model = forge_objects.unet.model.diffusion_model
conditioner = getattr(sd_model, 'conditioner', None)
if conditioner:
text_cond_models = []
for i in range(len(conditioner.embedders)):
embedder = conditioner.embedders[i]
typename = type(embedder).__name__
if typename == 'FrozenCLIPEmbedder': # SDXL Clip L
embedder.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
embedder.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
model_embeddings = embedder.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack)
embedder = forge_clip.CLIP_SD_XL_L(embedder, sd_hijack.model_hijack)
conditioner.embedders[i] = embedder
text_cond_models.append(embedder)
elif typename == 'FrozenOpenCLIPEmbedder2': # SDXL Clip G
embedder.tokenizer = forge_objects.clip.tokenizer.clip_g.tokenizer
embedder.transformer = forge_objects.clip.cond_stage_model.clip_g.transformer
embedder.text_projection = forge_objects.clip.cond_stage_model.clip_g.text_projection
model_embeddings = embedder.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack, textual_inversion_key='clip_g')
embedder = forge_clip.CLIP_SD_XL_G(embedder, sd_hijack.model_hijack)
conditioner.embedders[i] = embedder
text_cond_models.append(embedder)
if len(text_cond_models) == 1:
sd_model.cond_stage_model = text_cond_models[0]
else:
sd_model.cond_stage_model = conditioner
elif type(sd_model.cond_stage_model).__name__ == 'FrozenCLIPEmbedder': # SD15 Clip
sd_model.cond_stage_model.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
sd_model.cond_stage_model.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
model_embeddings = sd_model.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack)
sd_model.cond_stage_model = forge_clip.CLIP_SD_15_L(sd_model.cond_stage_model, sd_hijack.model_hijack)
elif type(sd_model.cond_stage_model).__name__ == 'FrozenOpenCLIPEmbedder': # SD21 Clip
sd_model.cond_stage_model.tokenizer = forge_objects.clip.tokenizer.clip_h.tokenizer
sd_model.cond_stage_model.transformer = forge_objects.clip.cond_stage_model.clip_h.transformer
model_embeddings = sd_model.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(
model_embeddings.token_embedding, sd_hijack.model_hijack)
sd_model.cond_stage_model = forge_clip.CLIP_SD_21_H(sd_model.cond_stage_model, sd_hijack.model_hijack)
else:
raise NotImplementedError('Bad Clip Class Name:' + type(sd_model.cond_stage_model).__name__)
timer.record("forge set components")
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
if getattr(sd_model, 'parameterization', None) == 'v':
sd_model.forge_objects.unet.model.model_sampling = model_sampling(sd_model.forge_objects.unet.model.model_config, ModelType.V_PREDICTION)
sd_model.is_sdxl = conditioner is not None
sd_model.is_sd2 = not sd_model.is_sdxl and hasattr(sd_model.cond_stage_model, 'model')
sd_model.is_sd1 = not sd_model.is_sdxl and not sd_model.is_sd2
sd_model.is_ssd = sd_model.is_sdxl and 'model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight' not in sd_model.state_dict().keys()
if sd_model.is_sdxl:
extend_sdxl(sd_model)
sd_model.sd_model_hash = sd_model_hash
sd_model.sd_model_checkpoint = checkpoint_info.filename
sd_model.sd_checkpoint_info = checkpoint_info
@torch.inference_mode()
def patched_decode_first_stage(x):
sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_out(x)
sample = sd_model.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0
return sample.to(x)
@torch.inference_mode()
def patched_encode_first_stage(x):
sample = sd_model.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5)
sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_in(sample)
return sample.to(x)
sd_model.ema_scope = lambda *args, **kwargs: contextlib.nullcontext()
sd_model.get_first_stage_encoding = lambda x: x
sd_model.decode_first_stage = patched_decode_first_stage
sd_model.encode_first_stage = patched_encode_first_stage
sd_model.clip = sd_model.cond_stage_model
sd_model.tiling_enabled = False
timer.record("forge finalize")
sd_model.current_lora_hash = str([])
return sd_model