File size: 5,766 Bytes
45ba23c 6abae26 1145a86 6abae26 ee5bc94 35488cc bb154bd 6abae26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os, shutil, json, requests, random, runpod
import torch
from accelerate.utils import set_seed
from utils.inference import V1InferenceLoop, BSRInferenceLoop, BFRInferenceLoop, UnAlignedBFRInferenceLoop, BIDInferenceLoop
class Args:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
args = Args(
task=None,
upscale=None,
version="v2",
steps=50,
better_start=False,
tiled=False,
tile_size=512,
tile_stride=256,
pos_prompt="",
neg_prompt="low quality, blurry, low-resolution, noisy, unsharp, weird textures",
cfg_scale=4.0,
input=None,
n_samples=1,
guidance=False,
g_loss="w_mse",
g_scale=0.0,
g_start=1001,
g_stop=-1,
g_space="latent",
g_repeat=1,
output=None,
seed=231,
device="cuda"
)
def download_file(url, save_dir, file_name):
os.makedirs(save_dir, exist_ok=True)
original_file_name = url.split('/')[-1]
_, original_file_extension = os.path.splitext(original_file_name)
file_path = os.path.join(save_dir, file_name + original_file_extension)
response = requests.get(url)
response.raise_for_status()
with open(file_path, 'wb') as file:
file.write(response.content)
return file_path
@torch.inference_mode()
def generate(input):
values = input["input"]
input_image = values['input_image_check']
input_image = download_file(url=input_image, save_dir='/content/input', file_name='diffbir_tost')
args.input=input_image
args.task=values['task']
args.upscale=values['upscale']
args.version=values['version']
args.steps=values['steps']
args.better_start=values['better_start']
args.tiled=values['tiled']
args.tile_size=values['tile_size']
args.tile_stride=values['tile_stride']
args.pos_prompt=values['pos_prompt']
args.neg_prompt=values['neg_prompt']
args.cfg_scale=values['cfg_scale']
args.guidance=values['guidance']
args.g_loss=values['g_loss']
args.g_scale=values['g_scale']
args.g_space=values['g_space']
args.seed=values['seed']
args.output='/content/result'
set_seed(args.seed)
if args.version == "v1":
V1InferenceLoop(args).run()
else:
supported_tasks = {
"sr": BSRInferenceLoop,
"dn": BIDInferenceLoop,
"fr": BFRInferenceLoop,
"fr_bg": UnAlignedBFRInferenceLoop
}
supported_tasks[args.task](args).run()
if args.task == "fr_bg":
result = "/content/result/diffbir_tost_0.png"
else:
result = "/content/result/diffbir_tost.png"
try:
notify_uri = values['notify_uri']
del values['notify_uri']
notify_token = values['notify_token']
del values['notify_token']
discord_id = values['discord_id']
del values['discord_id']
if(discord_id == "discord_id"):
discord_id = os.getenv('com_camenduru_discord_id')
discord_channel = values['discord_channel']
del values['discord_channel']
if(discord_channel == "discord_channel"):
discord_channel = os.getenv('com_camenduru_discord_channel')
discord_token = values['discord_token']
del values['discord_token']
if(discord_token == "discord_token"):
discord_token = os.getenv('com_camenduru_discord_token')
job_id = values['job_id']
del values['job_id']
default_filename = os.path.basename(result)
with open(result, "rb") as file:
files = {default_filename: file.read()}
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
response = requests.post(
f"https://discord.com/api/v9/channels/{discord_channel}/messages",
data=payload,
headers={"Authorization": f"Bot {discord_token}"},
files=files
)
response.raise_for_status()
result_url = response.json()['attachments'][0]['url']
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
web_notify_token = os.getenv('com_camenduru_web_notify_token')
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
return {"jobId": job_id, "result": result_url, "status": "DONE"}
except Exception as e:
error_payload = {"jobId": job_id, "status": "FAILED"}
try:
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
except:
pass
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists('/content/input'):
shutil.rmtree('/content/input')
if os.path.exists('/content/result'):
shutil.rmtree('/content/result')
runpod.serverless.start({"handler": generate}) |