Spaces:
Runtime error
Runtime error
File size: 9,058 Bytes
8067938 8c65d88 8067938 8c65d88 8067938 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os, json, requests, random, runpod
import torch
import numpy as np
import cv2
from sam2.build_sam import build_sam2_video_predictor
import shutil
import subprocess
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from torchvision.transforms import functional as F
def detect_body_keypoints(frame):
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img_tensor = F.to_tensor(frame_rgb).unsqueeze(0).to('cuda')
with torch.no_grad():
prediction = body_detector(img_tensor)[0]
if len(prediction['boxes']) > 0:
best_box = prediction['boxes'][prediction['scores'].argmax()].cpu().numpy()
x1, y1, x2, y2 = best_box
center_x, center_y = (x1 + x2) / 2, (y1 + y2) / 2
width, height = x2 - x1, y2 - y1
offset_x, offset_y = width * 0.2, height * 0.2
keypoints = np.array([
[center_x, center_y],
[center_x - offset_x, center_y],
[center_x + offset_x, center_y],
[center_x, center_y - offset_y],
[center_x, center_y + offset_y],
], dtype=np.float32)
keypoints[:, 0] = np.clip(keypoints[:, 0], x1, x2)
keypoints[:, 1] = np.clip(keypoints[:, 1], y1, y2)
return keypoints
else:
height, width = frame.shape[:2]
center = np.array([[width // 2, height // 2]], dtype=np.float32)
return np.tile(center, (5, 1))
def remove_background(frame, mask, bg_color):
mask = mask.squeeze()
if mask.dtype == bool:
mask = mask.astype(np.uint8) * 255
else:
mask = (mask > 0).astype(np.uint8) * 255
mask = cv2.resize(mask, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_NEAREST)
bg = np.full(frame.shape, bg_color, dtype=np.uint8)
fg = cv2.bitwise_and(frame, frame, mask=mask)
bg = cv2.bitwise_and(bg, bg, mask=cv2.bitwise_not(mask))
result = cv2.add(fg, bg)
result = clean_hair_area(frame, result, mask, bg_color)
return result
def clean_hair_area(original, processed, mask, bg_color):
kernel = np.ones((5, 5), np.uint8)
dilated_mask = cv2.dilate(mask, kernel, iterations=2)
hair_edge_mask = cv2.subtract(dilated_mask, mask)
bg_sample = cv2.bitwise_and(original, original, mask=cv2.bitwise_not(dilated_mask))
bg_average = cv2.mean(bg_sample)[:3]
color_distances = np.sqrt(np.sum((original.astype(np.float32) - bg_average) ** 2, axis=2))
color_distances = (color_distances - color_distances.min()) / (color_distances.max() - color_distances.min())
alpha = (1 - color_distances) * (hair_edge_mask / 255.0)
alpha = np.clip(alpha, 0, 1)
for c in range(3):
processed[:, :, c] = processed[:, :, c] * (1 - alpha) + bg_color[c] * alpha
return processed
with torch.inference_mode():
checkpoint = 'sam2_hiera_large.pt'
model_cfg = 'sam2_hiera_l.yaml'
predictor = build_sam2_video_predictor(model_cfg, checkpoint)
body_detector = fasterrcnn_resnet50_fpn(pretrained=True)
body_detector.eval()
body_detector.to("cuda")
def download_file(url, save_dir):
os.makedirs(save_dir, exist_ok=True)
file_name = url.split('/')[-1]
file_path = os.path.join(save_dir, file_name)
response = requests.get(url)
response.raise_for_status()
with open(file_path, 'wb') as file:
file.write(response.content)
return file_path
@torch.inference_mode()
def generate(input):
values = input["input"]
input_video = values['input_video']
input_video = download_file(url=input_video, save_dir='/content')
bg_color = values['bg_color']
bg_color = tuple(int(bg_color.lstrip('#')[i:i + 2], 16) for i in (0, 2, 4))[::-1]
frames_dir = "/content/frames"
if os.path.exists(frames_dir):
shutil.rmtree(frames_dir)
os.makedirs(frames_dir, exist_ok=True)
ffmpeg_cmd = ["ffmpeg", "-i", str(input_video), "-q:v", "2", "-start_number", "0",f"{frames_dir}/%05d.jpg"]
result = subprocess.run(ffmpeg_cmd, capture_output=True, text=True, check=True)
frame_names = [p for p in os.listdir(frames_dir) if p.endswith(('.jpg', '.jpeg', '.JPG', '.JPEG'))]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
inference_state = predictor.init_state(video_path=frames_dir)
first_frame_path = os.path.join(frames_dir, frame_names[0])
first_frame = cv2.imread(first_frame_path)
keypoints = detect_body_keypoints(first_frame)
_, out_obj_ids, out_mask_logits = predictor.add_new_points(inference_state=inference_state, frame_idx=0, obj_id=1, points=keypoints, labels=np.ones(len(keypoints), dtype=np.int32))
video_segments = {}
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: out_mask_logits[i].cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
output_frames_dir = '/content/output_frames'
os.makedirs(output_frames_dir, exist_ok=True)
frame_count = 0
for out_frame_idx in range(len(frame_names)):
frame_path = os.path.join(frames_dir, frame_names[out_frame_idx])
frame = cv2.imread(frame_path)
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
frame_with_bg_removed = remove_background(frame, out_mask, bg_color)
output_frame_path = os.path.join(output_frames_dir, f"{out_frame_idx:05d}.jpg")
cv2.imwrite(output_frame_path, frame_with_bg_removed)
frame_count += 1
output_video_path = '/content/sam2_rm_bg_tost.mp4'
final_video_cmd = ["ffmpeg", "-y", "-framerate", "30", "-i", f"{output_frames_dir}/%05d.jpg", "-c:v", "libx264", "-pix_fmt", "yuv420p", output_video_path]
result = subprocess.run(final_video_cmd, capture_output=True, text=True, check=True)
result = "/content/sam2_rm_bg_tost.mp4"
try:
notify_uri = values['notify_uri']
del values['notify_uri']
notify_token = values['notify_token']
del values['notify_token']
discord_id = values['discord_id']
del values['discord_id']
if(discord_id == "discord_id"):
discord_id = os.getenv('com_camenduru_discord_id')
discord_channel = values['discord_channel']
del values['discord_channel']
if(discord_channel == "discord_channel"):
discord_channel = os.getenv('com_camenduru_discord_channel')
discord_token = values['discord_token']
del values['discord_token']
if(discord_token == "discord_token"):
discord_token = os.getenv('com_camenduru_discord_token')
job_id = values['job_id']
del values['job_id']
default_filename = os.path.basename(result)
with open(result, "rb") as file:
files = {default_filename: file.read()}
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
response = requests.post(
f"https://discord.com/api/v9/channels/{discord_channel}/messages",
data=payload,
headers={"Authorization": f"Bot {discord_token}"},
files=files
)
response.raise_for_status()
result_url = response.json()['attachments'][0]['url']
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
web_notify_token = os.getenv('com_camenduru_web_notify_token')
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
return {"jobId": job_id, "result": result_url, "status": "DONE"}
except Exception as e:
error_payload = {"jobId": job_id, "status": "FAILED"}
try:
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
except:
pass
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists(result):
os.remove(result)
if os.path.exists(output_frames_dir):
shutil.rmtree(output_frames_dir)
if os.path.exists(frames_dir):
shutil.rmtree(frames_dir)
runpod.serverless.start({"handler": generate}) |