File size: 9,058 Bytes
8067938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c65d88
8067938
8c65d88
8067938
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os, json, requests, random, runpod

import torch
import numpy as np
import cv2
from sam2.build_sam import build_sam2_video_predictor
import shutil
import subprocess
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from torchvision.transforms import functional as F

def detect_body_keypoints(frame):
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    img_tensor = F.to_tensor(frame_rgb).unsqueeze(0).to('cuda')
    with torch.no_grad():
        prediction = body_detector(img_tensor)[0]
    if len(prediction['boxes']) > 0:
        best_box = prediction['boxes'][prediction['scores'].argmax()].cpu().numpy()
        x1, y1, x2, y2 = best_box
        center_x, center_y = (x1 + x2) / 2, (y1 + y2) / 2
        width, height = x2 - x1, y2 - y1
        offset_x, offset_y = width * 0.2, height * 0.2
        keypoints = np.array([
            [center_x, center_y],
            [center_x - offset_x, center_y],
            [center_x + offset_x, center_y],
            [center_x, center_y - offset_y],
            [center_x, center_y + offset_y],
        ], dtype=np.float32)
        keypoints[:, 0] = np.clip(keypoints[:, 0], x1, x2)
        keypoints[:, 1] = np.clip(keypoints[:, 1], y1, y2)
        return keypoints
    else:
        height, width = frame.shape[:2]
        center = np.array([[width // 2, height // 2]], dtype=np.float32)
        return np.tile(center, (5, 1))

def remove_background(frame, mask, bg_color):
    mask = mask.squeeze()
    if mask.dtype == bool:
        mask = mask.astype(np.uint8) * 255
    else:
        mask = (mask > 0).astype(np.uint8) * 255
    mask = cv2.resize(mask, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_NEAREST)
    bg = np.full(frame.shape, bg_color, dtype=np.uint8)
    fg = cv2.bitwise_and(frame, frame, mask=mask)
    bg = cv2.bitwise_and(bg, bg, mask=cv2.bitwise_not(mask))
    result = cv2.add(fg, bg)
    result = clean_hair_area(frame, result, mask, bg_color)
    return result

def clean_hair_area(original, processed, mask, bg_color):
    kernel = np.ones((5, 5), np.uint8)
    dilated_mask = cv2.dilate(mask, kernel, iterations=2)
    hair_edge_mask = cv2.subtract(dilated_mask, mask)
    bg_sample = cv2.bitwise_and(original, original, mask=cv2.bitwise_not(dilated_mask))
    bg_average = cv2.mean(bg_sample)[:3]
    color_distances = np.sqrt(np.sum((original.astype(np.float32) - bg_average) ** 2, axis=2))
    color_distances = (color_distances - color_distances.min()) / (color_distances.max() - color_distances.min())
    alpha = (1 - color_distances) * (hair_edge_mask / 255.0)
    alpha = np.clip(alpha, 0, 1)
    for c in range(3):
        processed[:, :, c] = processed[:, :, c] * (1 - alpha) + bg_color[c] * alpha
    return processed

with torch.inference_mode():
    checkpoint = 'sam2_hiera_large.pt'
    model_cfg = 'sam2_hiera_l.yaml'
    predictor = build_sam2_video_predictor(model_cfg, checkpoint)
    body_detector = fasterrcnn_resnet50_fpn(pretrained=True)
    body_detector.eval()
    body_detector.to("cuda")

def download_file(url, save_dir):
    os.makedirs(save_dir, exist_ok=True)
    file_name = url.split('/')[-1]
    file_path = os.path.join(save_dir, file_name)
    response = requests.get(url)
    response.raise_for_status()
    with open(file_path, 'wb') as file:
        file.write(response.content)
    return file_path

@torch.inference_mode()
def generate(input):
    values = input["input"]

    input_video = values['input_video']
    input_video = download_file(url=input_video, save_dir='/content')
    bg_color = values['bg_color']

    bg_color = tuple(int(bg_color.lstrip('#')[i:i + 2], 16) for i in (0, 2, 4))[::-1]
    frames_dir = "/content/frames"
    if os.path.exists(frames_dir):
        shutil.rmtree(frames_dir)
    os.makedirs(frames_dir, exist_ok=True)
    ffmpeg_cmd = ["ffmpeg", "-i", str(input_video), "-q:v", "2", "-start_number", "0",f"{frames_dir}/%05d.jpg"]
    result = subprocess.run(ffmpeg_cmd, capture_output=True, text=True, check=True)
    frame_names = [p for p in os.listdir(frames_dir) if p.endswith(('.jpg', '.jpeg', '.JPG', '.JPEG'))]
    frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
    inference_state = predictor.init_state(video_path=frames_dir)
    first_frame_path = os.path.join(frames_dir, frame_names[0])
    first_frame = cv2.imread(first_frame_path)
    keypoints = detect_body_keypoints(first_frame)
    _, out_obj_ids, out_mask_logits = predictor.add_new_points(inference_state=inference_state, frame_idx=0, obj_id=1, points=keypoints, labels=np.ones(len(keypoints), dtype=np.int32))
    video_segments = {}
    for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
        video_segments[out_frame_idx] = {
            out_obj_id: out_mask_logits[i].cpu().numpy()
            for i, out_obj_id in enumerate(out_obj_ids)
        }
    output_frames_dir = '/content/output_frames'
    os.makedirs(output_frames_dir, exist_ok=True)
    frame_count = 0
    for out_frame_idx in range(len(frame_names)):
        frame_path = os.path.join(frames_dir, frame_names[out_frame_idx])
        frame = cv2.imread(frame_path)
        for out_obj_id, out_mask in video_segments[out_frame_idx].items():
            frame_with_bg_removed = remove_background(frame, out_mask, bg_color)
        output_frame_path = os.path.join(output_frames_dir, f"{out_frame_idx:05d}.jpg")
        cv2.imwrite(output_frame_path, frame_with_bg_removed)
        frame_count += 1
    output_video_path = '/content/sam2_rm_bg_tost.mp4'
    final_video_cmd = ["ffmpeg", "-y", "-framerate", "30", "-i", f"{output_frames_dir}/%05d.jpg", "-c:v", "libx264", "-pix_fmt", "yuv420p", output_video_path]
    result = subprocess.run(final_video_cmd, capture_output=True, text=True, check=True)

    result = "/content/sam2_rm_bg_tost.mp4"
    try:
        notify_uri = values['notify_uri']
        del values['notify_uri']
        notify_token = values['notify_token']
        del values['notify_token']
        discord_id = values['discord_id']
        del values['discord_id']
        if(discord_id == "discord_id"):
            discord_id = os.getenv('com_camenduru_discord_id')
        discord_channel = values['discord_channel']
        del values['discord_channel']
        if(discord_channel == "discord_channel"):
            discord_channel = os.getenv('com_camenduru_discord_channel')
        discord_token = values['discord_token']
        del values['discord_token']
        if(discord_token == "discord_token"):
            discord_token = os.getenv('com_camenduru_discord_token')
        job_id = values['job_id']
        del values['job_id']
        default_filename = os.path.basename(result)
        with open(result, "rb") as file:
            files = {default_filename: file.read()}
        payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
        response = requests.post(
            f"https://discord.com/api/v9/channels/{discord_channel}/messages",
            data=payload,
            headers={"Authorization": f"Bot {discord_token}"},
            files=files
        )
        response.raise_for_status()
        result_url = response.json()['attachments'][0]['url']
        notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
        web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
        web_notify_token = os.getenv('com_camenduru_web_notify_token')
        if(notify_uri == "notify_uri"):
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
        else:
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        return {"jobId": job_id, "result": result_url, "status": "DONE"}
    except Exception as e:
        error_payload = {"jobId": job_id, "status": "FAILED"}
        try:
            if(notify_uri == "notify_uri"):
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            else:
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
                requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        except:
            pass
        return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
    finally:
        if os.path.exists(result):
            os.remove(result)
        if os.path.exists(output_frames_dir):
            shutil.rmtree(output_frames_dir)
        if os.path.exists(frames_dir):
            shutil.rmtree(frames_dir)

runpod.serverless.start({"handler": generate})