import { env, AutoProcessor, AutoModel, RawImage } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.17.1'; env.allowLocalModels = false; const status = document.getElementById('status'); const fileUpload = document.getElementById('upload'); const example = document.getElementById('example'); const resultsContainer = document.getElementById('results'); const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg'; const THRESHOLD = 0.25; const MODEL_VARIANTS = ['yolov10n', 'yolov10s', 'yolov10m', 'yolov10b', 'yolov10l', 'yolov10x']; status.textContent = 'Loading models...'; const models = await Promise.all(MODEL_VARIANTS.map(async variant => { const model_id = `onnx-community/${variant}`; const processor = await AutoProcessor.from_pretrained(model_id); const model = await AutoModel.from_pretrained(model_id); return { variant, processor, model }; })); status.textContent = 'Ready'; example.addEventListener('click', (e) => { e.preventDefault(); detect(EXAMPLE_URL); }); fileUpload.addEventListener('change', function (e) { const file = e.target.files[0]; if (!file) { return; } const reader = new FileReader(); reader.onload = e2 => detect(e2.target.result); reader.readAsDataURL(file); }); async function detect(url) { resultsContainer.innerHTML = ''; const image = await RawImage.fromURL(url); const ar = image.width / image.height; const [cw, ch] = (ar > 1) ? [640, 640 / ar] : [640 * ar, 640]; status.textContent = 'Analysing...'; await Promise.all(models.map(async ({ variant, processor, model }) => { const inputs = await processor(image); const { output0 } = await model({ images: inputs.pixel_values }); const sizes = inputs.reshaped_input_sizes[0].reverse(); const container = document.createElement('div'); container.className = 'image-container'; container.style.width = `${cw}px`; container.style.height = `${ch}px`; container.style.backgroundImage = `url(${url})`; const label = document.createElement('div'); label.textContent = variant; label.style.position = 'absolute'; label.style.top = '0'; label.style.left = '0'; label.style.backgroundColor = 'rgba(0, 0, 0, 0.5)'; label.style.color = '#fff'; label.style.padding = '5px'; container.appendChild(label); output0.tolist()[0].forEach(x => renderBox(x, sizes, container, model.config.id2label)); resultsContainer.appendChild(container); })); status.textContent = ''; } function renderBox([xmin, ymin, xmax, ymax, score, id], [w, h], container, id2label) { if (score < THRESHOLD) return; const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0); const boxElement = document.createElement('div'); boxElement.className = 'bounding-box'; Object.assign(boxElement.style, { borderColor: color, left: 100 * xmin / w + '%', top: 100 * ymin / h + '%', width: 100 * (xmax - xmin) / w + '%', height: 100 * (ymax - ymin) / h + '%', }); const labelElement = document.createElement('span'); labelElement.textContent = id2label[id]; labelElement.className = 'bounding-box-label'; labelElement.style.backgroundColor = color; boxElement.appendChild(labelElement); container.appendChild(boxElement); }