import random from datetime import datetime import av import light_side as ls import numpy as np import requests import streamlit as st from PIL import Image from streamlit_image_comparison import image_comparison from streamlit_webrtc import VideoProcessorBase, webrtc_streamer def main(): # pylint: disable=no-member st.set_page_config( page_title="Light Side Demo Page", page_icon="⚡️", layout="centered", initial_sidebar_state="expanded", menu_items={ "Get Help": "https://canturan10.github.io/light_side/", "About": "Low-Light Image Enhancement", }, ) st.title("Light Side Demo Page") url = "https://raw.githubusercontent.com/canturan10/light_side/master/src/light_side.png?raw=true" light_side = Image.open(requests.get(url, stream=True).raw) st.sidebar.image(light_side, width=100) st.sidebar.title("Light Side of the Night") st.sidebar.caption(ls.__description__) st.sidebar.write( "**Light Side** is an low-light image enhancement library that consist state-of-the-art deep learning methods. The light side of the Force is referenced. The aim is to create a light structure that will find the `Light Side of the Night`." ) st.sidebar.caption(f"Version: `{ls.__version__}`") st.sidebar.caption(f"License: `{ls.__license__}`") st.sidebar.caption("") st.sidebar.caption(f"[Website](https://canturan10.github.io/light_side/)") st.sidebar.caption(f"[Docs](https://light-side.readthedocs.io/)") st.sidebar.caption(f"[Github](https://github.com/canturan10/light_side)") st.sidebar.caption(f"[Demo Page](https://canturan10-light-side-streamlit-app-guxrpf.streamlitapp.com/)") # st.sidebar.caption(f"[Hugging Face](https://huggingface.co/spaces/canturan10/light_side)") st.sidebar.caption(f"[Pypi](https://pypi.org/project/light-side/)") st.sidebar.caption("") st.sidebar.caption(ls.__copyright__) selected_model = st.selectbox( "Select model", ls.available_models(), ) selected_version = st.selectbox( "Select version", ls.get_model_versions(selected_model), ) mode = st.radio("Select Inference Mode", ("Image", "Video (WebRTC)")) model = ls.Enhancer.from_pretrained(selected_model, selected_version) model.eval() if mode == "Image": uploaded_file = st.file_uploader( "", type=["png", "jpg", "jpeg"], accept_multiple_files=False ) if uploaded_file is None: st.write("Default Image") # Default image. url = f"https://github.com/canturan10/light_side/blob/master/src/sample/{random_sample}?raw=true" image = Image.open(requests.get(url, stream=True).raw) else: # User-selected image. image = Image.open(uploaded_file) image = np.array(image.convert("RGB")) results = model.predict(image)[0] orj_img = results["image"] enh_img = results["enhanced"] image_comparison( img1=orj_img, img2=enh_img, label1="Dark Side", label2="Light Side", ) else: st.write( "If video is not playing, please refresh the page. Depends on your browser and connection, it may take some time to load the video." ) class VideoProcessor(VideoProcessorBase): def recv(self, frame): img = frame.to_ndarray(format="bgr24") results = model.predict(img)[0] orj_img = results["image"] enh_img = results["enhanced"] return av.VideoFrame.from_ndarray( np.concatenate((orj_img, enh_img), axis=1), format="bgr24" ) ctx = webrtc_streamer( key="example", video_processor_factory=VideoProcessor, rtc_configuration={ "iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}] }, media_stream_constraints={ "video": True, "audio": False, }, ) if __name__ == "__main__": samples = [ "0_orj.png", "1_orj.png", "2_orj.png", "3_orj.png", "4_orj.png", "5_orj.png", ] random.seed(datetime.now()) random_sample = samples[random.randint(0, len(samples) - 1)] main()