clinicalnote / app.py
carisackc's picture
Rename Summarization_25Nov2022.py to app.py
5490c09
raw
history blame
12.5 kB
import torch
import streamlit as st
from streamlit import components
import pandas as pd
from transformers import BartTokenizer, BartForConditionalGeneration
from transformers import T5Tokenizer, T5ForConditionalGeneration
import evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, LongT5ForConditionalGeneration
import numpy as np
from math import ceil
import en_core_web_lg
from collections import Counter
from string import punctuation
# Gensim
import gensim
from gensim.summarization import summarize
import spacy
nlp = en_core_web_lg.load()
st.set_page_config(page_title ='Clinical Note Summarization',
#page_icon= "Notes",
layout='wide')
st.title('Clinical Note Summarization')
st.sidebar.markdown('Using transformer model')
## Loading in dataset
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
df = pd.read_csv("shpi_w_rouge21Nov.csv")
#df.shape
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
##Renaming column
#df.rename(columns={'patient id':'Patient_ID',
# 'hospital admission id':'Admission_ID',
# 'transcription':'Original_Text'}, inplace = True)
#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
'HADM_ID':'Admission_ID',
'hpi_input_text':'Original_Text',
'hpi_reference_summary':'Reference_text'}, inplace = True)
#data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
#Filter selection
st.sidebar.header("Search for Patient:")
patientid = df['Patient_ID']
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
HospitalAdmission = st.sidebar.selectbox('', admissionid)
#Another way to for filter selection
#patient = st.sidebar.multiselect(
# "Select Patient ID:",
# options=df['Patient_ID'].unique(),
# default= None
#)
#HospitalAdmission = st.sidebar.multiselect(
# "Select Hospital Admission ID:",
# options=df['Admission_ID'].unique(),
# #default=df['Admission_ID'].unique()
# default = None
#)
# List of Model available
model = st.sidebar.selectbox('Select Model', ('BART','BERT','BertGPT2','Gensim','LexRank','Long T5','Luhn','Pysummarization','SBERT Summary Tokenizer','T5','T5 Seq2Seq','T5-Base','TextRank'))
if model == 'BART':
_num_beams = 4
_no_repeat_ngram_size = 3
_length_penalty = 1
_min_length = 12
_max_length = 128
_early_stopping = True
else:
_num_beams = 4
_no_repeat_ngram_size = 3
_length_penalty = 2
_min_length = 30
_max_length = 200
_early_stopping = True
col3,col4 = st.columns(2)
patientid = col3.write(f"Patient ID: {patient} ")
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
col1, col2 = st.columns(2)
_min_length = col1.number_input("Minimum Length", value=_min_length)
_max_length = col2.number_input("Maximun Length", value=_max_length)
##_early_stopping = col3.number_input("early_stopping", value=_early_stopping)
#text = st.text_area('Input Clinical Note here')
# Query out relevant Clinical notes
original_text = df.query(
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
)
original_text2 = original_text['Original_Text'].values
runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300)
reference_text = original_text['Reference_text'].values
## ===== to highlight text =====
from IPython.core.display import HTML, display
def visualize(title, sentence_list, best_sentences):
text = ''
#display(HTML(f'<h1>Summary - {title}</h1>'))
for sentence in sentence_list:
if sentence in best_sentences:
#text += ' ' + str(sentence).replace(sentence, f"<mark>{sentence}</mark>")
text += ' ' + str(sentence).replace(sentence, f"<span class='highlight yellow'>{sentence}</span>")
else:
text += ' ' + sentence
display(HTML(f""" {text} """))
output = ''
best_sentences = []
for sentence in output:
#print(sentence)
best_sentences.append(str(sentence))
return text
# try this web solution https://discuss.streamlit.io/t/colored-boxes-around-sections-of-a-sentence/3201/2
#===== Pysummarization =====
from pysummarization.nlpbase.auto_abstractor import AutoAbstractor
from pysummarization.tokenizabledoc.simple_tokenizer import SimpleTokenizer
from pysummarization.abstractabledoc.top_n_rank_abstractor import TopNRankAbstractor
import regex as re
auto_abstractor = AutoAbstractor()
auto_abstractor.tokenizable_doc = SimpleTokenizer()
auto_abstractor.delimiter_list = [".", "\n"]
abstractable_doc = TopNRankAbstractor()
def pysummarizer(input_text):
# print(type(text))
summary = auto_abstractor.summarize(input_text, abstractable_doc)
best_sentences=[]
#summary_clean = ''.join([str(sentence).capitalize() for sentence in summary['summarize_result'] for summary['summarize_result'] in auto_abstractor.summarize(text, abstractable_doc)])
for sentence in summary['summarize_result']:
best_sentences.append(re.sub(r'\s+', ' ', sentence).strip())
clean_summary=''.join(sentence for sentence in best_sentences)
return clean_summary
##===== BERT Summary tokenizer =====
def BertSummarizer(input_text):
from transformers import BigBirdTokenizer
from summarizer import Summarizer
bertsummarizer = Summarizer()
model = Summarizer()
result = model(input_text,ratio=0.4)
return result
##===== SBERT =====
from summarizer.sbert import SBertSummarizer
Sbertmodel = SBertSummarizer('paraphrase-MiniLM-L6-v2')
def Sbert(input_text):
# Sbertresult = Sbertmodel(text, num_sentences=3)
Sbertresult = Sbertmodel(input_text, ratio=0.4)
return Sbertresult
##===== T5 Seq2Seq =====
def t5seq2seq(input_text):
import torch
import torch.nn.functional as F
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
tokenizer = AutoTokenizer.from_pretrained("t5-base")
inputs = tokenizer("summarize: " + input_text, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
summary= tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
def BertGPT2(input_text):
#import nlp
# BioClinicalBert with BERT2GPT2 model with GPT2 decoder
from transformers import BertTokenizer, GPT2Tokenizer, EncoderDecoderModel
from transformers import AutoTokenizer, AutoModel
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16")
model.to(device)
#bert_tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
bert_tokenizer= AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
# CLS token will work as BOS token
bert_tokenizer.bos_token = bert_tokenizer.cls_token
# SEP token will work as EOS token
bert_tokenizer.eos_token = bert_tokenizer.sep_token
# make sure GPT2 appends EOS in begin and end
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
return outputs
GPT2Tokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens
gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# set pad_token_id to unk_token_id -> be careful here as unk_token_id == eos_token_id == bos_token_id
gpt2_tokenizer.pad_token = gpt2_tokenizer.unk_token
# set decoding params
model.config.decoder_start_token_id = gpt2_tokenizer.bos_token_id
model.config.eos_token_id = gpt2_tokenizer.eos_token_id
model.config.max_length = 142
model.config.min_length = 56
model.config.no_repeat_ngram_size = 3
model.early_stopping = True
model.length_penalty = 2.0
model.num_beams = 4
#test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test")
batch_size = 64
def Sbertmodel(batch):
# Tokenizer will automatically set [BOS] <text> [EOS]
# cut off at BERT max length 512
inputs = bert_tokenizer(batch, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
input_ids = inputs.input_ids.to("cuda")
attention_mask = inputs.attention_mask.to("cuda")
outputs = model.generate(input_ids, attention_mask=attention_mask)
# all special tokens including will be removed
output_str = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True)
#batch["pred"] = output_str
return output_str
Sbert(input_text)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def run_model(input_text):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if model == "BART":
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
input_text = str(input_text)
input_text = ' '.join(input_text.split())
input_tokenized = bart_tokenizer.encode(input_text, return_tensors='pt').to(device)
summary_ids = bart_model.generate(input_tokenized,
num_beams=_num_beams,
no_repeat_ngram_size=_no_repeat_ngram_size,
length_penalty=_length_penalty,
min_length=_min_length,
max_length=_max_length,
early_stopping=_early_stopping)
output = [bart_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
st.write('Summary')
st.success(output[0])
elif model == "T5":
t5_model = T5ForConditionalGeneration.from_pretrained("t5-base")
t5_tokenizer = T5Tokenizer.from_pretrained("t5-base")
input_text = str(input_text).replace('\n', '')
input_text = ' '.join(input_text.split())
input_tokenized = t5_tokenizer.encode(input_text, return_tensors="pt").to(device)
summary_task = torch.tensor([[21603, 10]]).to(device)
input_tokenized = torch.cat([summary_task, input_tokenized], dim=-1).to(device)
summary_ids = t5_model.generate(input_tokenized,
num_beams=_num_beams,
no_repeat_ngram_size=_no_repeat_ngram_size,
length_penalty=_length_penalty,
min_length=_min_length,
max_length=_max_length,
early_stopping=_early_stopping)
output = [t5_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
st.write('Summary')
st.success(output[0])
elif model == "Gensim":
output=summarize(str(input_text))
#visualize('of text', input_text, output)
st.write('Summary')
st.success(output)
elif model == "Pysummarization":
output = pysummarizer(input_text)
st.write('Summary')
st.success(output)
elif model == "BERT":
output = BertSummarizer(input_text)
st.write('Summary')
st.success(output)
elif model == "SBERT Summary Tokenizer":
output = Sbert(input_text)
st.write('Summary')
st.success(output)
elif model == "T5 Seq2Seq":
output = t5seq2seq(input_text)
st.write('Summary')
st.success(output)
elif model == "BertGPT2": #Not working correctly. to work on it later on
output = BertGPT2(input_text)
st.write('Summary')
st.success(output)
if st.button('Submit'):
run_model(runtext)
# runtext2=runtext.split('.')
# reference_text2=reference_text.split('.')
st.write(visualize('of text', runtext ,reference_text))
st.text_area('Reference text', str(reference_text))