import torch
import streamlit as st
from streamlit import components
import pandas as pd
from transformers import BartTokenizer, BartForConditionalGeneration
from transformers import T5Tokenizer, T5ForConditionalGeneration
import evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, LongT5ForConditionalGeneration
import numpy as np
from math import ceil
import en_core_web_lg
from collections import Counter
from string import punctuation
# Gensim
import gensim
from gensim.summarization import summarize
import spacy
nlp = en_core_web_lg.load()
st.set_page_config(page_title ='Clinical Note Summarization',
#page_icon= "Notes",
layout='wide')
st.title('Clinical Note Summarization')
st.sidebar.markdown('Using transformer model')
## Loading in dataset
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
df = pd.read_csv("shpi_w_rouge21Nov.csv")
#df.shape
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
##Renaming column
#df.rename(columns={'patient id':'Patient_ID',
# 'hospital admission id':'Admission_ID',
# 'transcription':'Original_Text'}, inplace = True)
#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
'HADM_ID':'Admission_ID',
'hpi_input_text':'Original_Text',
'hpi_reference_summary':'Reference_text'}, inplace = True)
#data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
#Filter selection
st.sidebar.header("Search for Patient:")
patientid = df['Patient_ID']
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
HospitalAdmission = st.sidebar.selectbox('', admissionid)
#Another way to for filter selection
#patient = st.sidebar.multiselect(
# "Select Patient ID:",
# options=df['Patient_ID'].unique(),
# default= None
#)
#HospitalAdmission = st.sidebar.multiselect(
# "Select Hospital Admission ID:",
# options=df['Admission_ID'].unique(),
# #default=df['Admission_ID'].unique()
# default = None
#)
# List of Model available
model = st.sidebar.selectbox('Select Model', ('BART','BERT','BertGPT2','Gensim','LexRank','Long T5','Luhn','Pysummarization','SBERT Summary Tokenizer','T5','T5 Seq2Seq','T5-Base','TextRank'))
if model == 'BART':
_num_beams = 4
_no_repeat_ngram_size = 3
_length_penalty = 1
_min_length = 12
_max_length = 128
_early_stopping = True
else:
_num_beams = 4
_no_repeat_ngram_size = 3
_length_penalty = 2
_min_length = 30
_max_length = 200
_early_stopping = True
col3,col4 = st.columns(2)
patientid = col3.write(f"Patient ID: {patient} ")
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
col1, col2 = st.columns(2)
_min_length = col1.number_input("Minimum Length", value=_min_length)
_max_length = col2.number_input("Maximun Length", value=_max_length)
##_early_stopping = col3.number_input("early_stopping", value=_early_stopping)
#text = st.text_area('Input Clinical Note here')
# Query out relevant Clinical notes
original_text = df.query(
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
)
original_text2 = original_text['Original_Text'].values
runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300)
reference_text = original_text['Reference_text'].values
## ===== to highlight text =====
from IPython.core.display import HTML, display
def visualize(title, sentence_list, best_sentences):
text = ''
#display(HTML(f'
Summary - {title}
'))
for sentence in sentence_list:
if sentence in best_sentences:
#text += ' ' + str(sentence).replace(sentence, f"{sentence}")
text += ' ' + str(sentence).replace(sentence, f"{sentence}")
else:
text += ' ' + sentence
display(HTML(f""" {text} """))
output = ''
best_sentences = []
for sentence in output:
#print(sentence)
best_sentences.append(str(sentence))
return text
# try this web solution https://discuss.streamlit.io/t/colored-boxes-around-sections-of-a-sentence/3201/2
#===== Pysummarization =====
from pysummarization.nlpbase.auto_abstractor import AutoAbstractor
from pysummarization.tokenizabledoc.simple_tokenizer import SimpleTokenizer
from pysummarization.abstractabledoc.top_n_rank_abstractor import TopNRankAbstractor
import regex as re
auto_abstractor = AutoAbstractor()
auto_abstractor.tokenizable_doc = SimpleTokenizer()
auto_abstractor.delimiter_list = [".", "\n"]
abstractable_doc = TopNRankAbstractor()
def pysummarizer(input_text):
# print(type(text))
summary = auto_abstractor.summarize(input_text, abstractable_doc)
best_sentences=[]
#summary_clean = ''.join([str(sentence).capitalize() for sentence in summary['summarize_result'] for summary['summarize_result'] in auto_abstractor.summarize(text, abstractable_doc)])
for sentence in summary['summarize_result']:
best_sentences.append(re.sub(r'\s+', ' ', sentence).strip())
clean_summary=''.join(sentence for sentence in best_sentences)
return clean_summary
##===== BERT Summary tokenizer =====
def BertSummarizer(input_text):
from transformers import BigBirdTokenizer
from summarizer import Summarizer
bertsummarizer = Summarizer()
model = Summarizer()
result = model(input_text,ratio=0.4)
return result
##===== SBERT =====
from summarizer.sbert import SBertSummarizer
Sbertmodel = SBertSummarizer('paraphrase-MiniLM-L6-v2')
def Sbert(input_text):
# Sbertresult = Sbertmodel(text, num_sentences=3)
Sbertresult = Sbertmodel(input_text, ratio=0.4)
return Sbertresult
##===== T5 Seq2Seq =====
def t5seq2seq(input_text):
import torch
import torch.nn.functional as F
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
tokenizer = AutoTokenizer.from_pretrained("t5-base")
inputs = tokenizer("summarize: " + input_text, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
summary= tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
def BertGPT2(input_text):
#import nlp
# BioClinicalBert with BERT2GPT2 model with GPT2 decoder
from transformers import BertTokenizer, GPT2Tokenizer, EncoderDecoderModel
from transformers import AutoTokenizer, AutoModel
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16")
model.to(device)
#bert_tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
bert_tokenizer= AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
# CLS token will work as BOS token
bert_tokenizer.bos_token = bert_tokenizer.cls_token
# SEP token will work as EOS token
bert_tokenizer.eos_token = bert_tokenizer.sep_token
# make sure GPT2 appends EOS in begin and end
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
return outputs
GPT2Tokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens
gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# set pad_token_id to unk_token_id -> be careful here as unk_token_id == eos_token_id == bos_token_id
gpt2_tokenizer.pad_token = gpt2_tokenizer.unk_token
# set decoding params
model.config.decoder_start_token_id = gpt2_tokenizer.bos_token_id
model.config.eos_token_id = gpt2_tokenizer.eos_token_id
model.config.max_length = 142
model.config.min_length = 56
model.config.no_repeat_ngram_size = 3
model.early_stopping = True
model.length_penalty = 2.0
model.num_beams = 4
#test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test")
batch_size = 64
def Sbertmodel(batch):
# Tokenizer will automatically set [BOS] [EOS]
# cut off at BERT max length 512
inputs = bert_tokenizer(batch, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
input_ids = inputs.input_ids.to("cuda")
attention_mask = inputs.attention_mask.to("cuda")
outputs = model.generate(input_ids, attention_mask=attention_mask)
# all special tokens including will be removed
output_str = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True)
#batch["pred"] = output_str
return output_str
Sbert(input_text)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def run_model(input_text):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if model == "BART":
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
input_text = str(input_text)
input_text = ' '.join(input_text.split())
input_tokenized = bart_tokenizer.encode(input_text, return_tensors='pt').to(device)
summary_ids = bart_model.generate(input_tokenized,
num_beams=_num_beams,
no_repeat_ngram_size=_no_repeat_ngram_size,
length_penalty=_length_penalty,
min_length=_min_length,
max_length=_max_length,
early_stopping=_early_stopping)
output = [bart_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
st.write('Summary')
st.success(output[0])
elif model == "T5":
t5_model = T5ForConditionalGeneration.from_pretrained("t5-base")
t5_tokenizer = T5Tokenizer.from_pretrained("t5-base")
input_text = str(input_text).replace('\n', '')
input_text = ' '.join(input_text.split())
input_tokenized = t5_tokenizer.encode(input_text, return_tensors="pt").to(device)
summary_task = torch.tensor([[21603, 10]]).to(device)
input_tokenized = torch.cat([summary_task, input_tokenized], dim=-1).to(device)
summary_ids = t5_model.generate(input_tokenized,
num_beams=_num_beams,
no_repeat_ngram_size=_no_repeat_ngram_size,
length_penalty=_length_penalty,
min_length=_min_length,
max_length=_max_length,
early_stopping=_early_stopping)
output = [t5_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
st.write('Summary')
st.success(output[0])
elif model == "Gensim":
output=summarize(str(input_text))
#visualize('of text', input_text, output)
st.write('Summary')
st.success(output)
elif model == "Pysummarization":
output = pysummarizer(input_text)
st.write('Summary')
st.success(output)
elif model == "BERT":
output = BertSummarizer(input_text)
st.write('Summary')
st.success(output)
elif model == "SBERT Summary Tokenizer":
output = Sbert(input_text)
st.write('Summary')
st.success(output)
elif model == "T5 Seq2Seq":
output = t5seq2seq(input_text)
st.write('Summary')
st.success(output)
elif model == "BertGPT2": #Not working correctly. to work on it later on
output = BertGPT2(input_text)
st.write('Summary')
st.success(output)
if st.button('Submit'):
run_model(runtext)
# runtext2=runtext.split('.')
# reference_text2=reference_text.split('.')
st.write(visualize('of text', runtext ,reference_text))
st.text_area('Reference text', str(reference_text))