File size: 5,865 Bytes
00536ec
358b2c2
00536ec
 
 
 
 
 
ea7eb3a
00536ec
 
ea7eb3a
00536ec
 
 
 
 
 
 
 
 
 
 
f27823f
00536ec
 
 
f27823f
00536ec
 
 
 
 
 
 
 
 
 
23ce602
a4bf793
be1cb46
23ce602
65ac61e
 
23ce602
65ac61e
23ce602
65ac61e
 
 
00536ec
db268ae
8b86e4f
00536ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36c80d4
00536ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b01da
00536ec
 
 
 
 
 
f69046f
 
00536ec
 
 
7cb6807
 
f69046f
00536ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a097779
00536ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c2a9de
00536ec
 
 
 
 
 
79b7521
 
 
 
00536ec
 
 
 
 
 
 
b5d445e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

# Setup

# Import the necessary Libraries
import os
import json
import uuid
import gradio as gr
#import tiktoken
from datasets import load_dataset

#import pandas as pd

from openai import OpenAI

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document

from langchain_community.embeddings.sentence_transformer import (
    SentenceTransformerEmbeddings
)
from langchain_community.vectorstores import Chroma

#from google.colab import userdata, drive

from langchain_community.document_loaders import PyPDFDirectoryLoader

#from google.colab import userdata



from huggingface_hub import CommitScheduler
from pathlib import Path




# Create Client
client = OpenAI(
    base_url="https://api.openai.com/v1",
    api_key=os.environ['CarlosGM']
)


#api_key = os.environ.get("CarlosGM")

#client = OpenAI(api_key=api_key)





model_name = 'gpt-3.5-turbo'


# Define the embedding model and the vectorstore

embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')

# Load the persisted vectorDB

## persisted_vectordb_location = '/content/drive/MyDrive/dataset_db'

dataset_10k_collection = 'Dataset-IBM-Meta-aws-google-msft'

vectorstore_persisted = Chroma(
    collection_name=dataset_10k_collection,
    persist_directory= './dataset_db',
    embedding_function=embedding_model
)


retriever = vectorstore_persisted.as_retriever(
    search_type='similarity',
    search_kwargs={'k': 5}
)


# Prepare the logging functionality

log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

scheduler = CommitScheduler(
    repo_id="10k-logs",
    repo_type="dataset",
    folder_path=log_folder,
    path_in_repo="data",
    every=2
)

# Define the Q&A system message

qna_system_message = """
You are an assistant to a financial services firm who answers user queries on annual 10 K reports.
User input will have the context required by you to answer user questions.
This context will begin with the token: ###Context.
The context contains references to specific portions of a document relevant to the user query.
The source for a context will begin with the token ###Source

User questions will begin with the token: ###Question.



Please answer only using the context provided in the input. Do not mention anything about the context in your final answer.

Please adhere to the following guidelines:
- Your response should only be about the question asked and nothing else.
- Answer only using the context provided.
- Do not mention anything about the context in your final answer.
- If the answer is not found in the context, it is very very important for you to respond with "I don't know. Please check the docs @ 'Dataset-10k file'"
- Always quote the source when you use the context. Cite the relevant source at the end of your response under the section - Source:
- Do not make up sources. Use the files provided in the sources section of the context and nothing else. You are prohibited from providing other sources.


If the answer is not found in the context, respond "I don't know".

Here is an example of how to structure your response:

Answer:
[Answer]

Source:
[Source]

"""




# Define the user message template

qna_user_message_template = """
###Context
Here are some documents that are relevant to the question.
{context}

###Question
{question}
"""


# Define the predict function that runs when 'Submit' is clicked or when a API request is made

def predict(user_input,company):

    #filter = "dataset/"+company+"-10-k-2023.pdf"
    #relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":filter})

    # Create context_for_query

    filter = "dataset/"+company+"-10-k-2023.pdf"
    relevant_document_chunks = retriever.invoke(user_input, k=5, filter={"source":filter})
    
    context_list = [d.page_content for d in relevant_document_chunks]
    context_for_query = ". ".join(context_list)
   

    # Create messages

    prompt = [
        {'role':'system', 'content': qna_system_message},
        {'role': 'user', 'content': qna_user_message_template.format(        
            context=context_for_query,
            question=user_input
            )
        }
    ]


    # Get response from the LLM

    try:
        response = client.chat.completions.create(
            model=model_name,
            messages=prompt,
            temperature=0
        )

        prediction = response.choices[0].message.content.strip()
    except Exception as e:
        prediction = f'Sorry, I encountered the following error: \n {e}'








    # While the prediction is made, log both the inputs and outputs to a local log file

    # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
    # access

    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps(
                {
                    'user_input': [user_input, company],
                    'retrieved_context': context_for_query,
                    'model_response': prediction
                }
            ))
            f.write("\n")

    return prediction

# Set-up the Gradio UI



# Add text box and radio button to the interface
# The radio button is used to select the company 10k report in which the context needs to be retrieved.

textbox = gr.Textbox(placeholder='Enter your query here', lines=6)
company = gr.Radio(['aws', 'google', 'ibm', 'meta', 'msft'], label= "Select Company 10-k Report")

# Create the interface

demo = gr.Interface(
    fn=predict,
    inputs=[textbox,company],
    outputs= "text",
    title= "10-k Report Q&A",
    description = "This Web API presents an inteface to ask questions about the 10-k reports"
)
    

# For the inputs parameter of Interface provide [textbox,company]


demo.queue()
demo.launch()