Spaces:
Sleeping
Sleeping
File size: 4,148 Bytes
762f0ec efe92e5 a4e99e6 41f9496 8115330 a4e99e6 8115330 a4e99e6 41f9496 a4e99e6 8115330 41f9496 a4e99e6 8115330 9ae5f9a 41f9496 8115330 a4e99e6 8115330 a4e99e6 41f9496 a4e99e6 41f9496 4749bba 41f9496 a4e99e6 41f9496 a4e99e6 41f9496 a4e99e6 031143a a4e99e6 41f9496 51e4890 8115330 0533925 a4e99e6 0533925 a4e99e6 0533925 41f9496 a4e99e6 8115330 41f9496 a4e99e6 6b54436 41f9496 a4e99e6 87626a9 41f9496 a4e99e6 41f9496 a4e99e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import subprocess
# Instalar un paquete utilizando pip desde Python
subprocess.check_call(["pip", "install", "langchain_community","langchain"])
# Import necessary libraries
import streamlit as st
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationEntityMemory
from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE
import os
from getpass import getpass
from langchain import HuggingFaceHub
from langchain_community.llms import HuggingFaceEndpoint
# Set Streamlit page configuration
st.set_page_config(page_title='🧠MemoryBot🤖', layout='wide')
# Initialize session states. Un session state es como un diccionario
if "generated" not in st.session_state:
st.session_state["generated"] = []
if "past" not in st.session_state:
st.session_state["past"] = []
if "input" not in st.session_state:
st.session_state["input"] = ""
if "stored_session" not in st.session_state:
st.session_state["stored_session"] = []
# Define function to get user input
def get_text():
"""
Get the user input text.
Returns:
(str): The text entered by the user
"""
input_text = st.text_input("You: ", st.session_state["input"], key="input",
placeholder="Your AI assistant here! Ask me anything ...",
label_visibility='hidden')
return input_text
# #parte para hacer un chat nuevo
def new_chat():
"""
Clears session state and starts a new chat.
"""
save = []
for i in range(len(st.session_state['generated'])-1, -1, -1):
save.append("User:" + st.session_state["past"][i])
save.append("Bot:" + st.session_state["generated"][i])
st.session_state["stored_session"].append(save)
st.session_state["generated"] = []
st.session_state["past"] = []
st.session_state["input"] = ""
st.session_state.entity_memory.entity_store = {}
st.session_state.entity_memory.buffer.clear()
# Add a button to start a new chat
st.sidebar.button("New Chat", on_click = new_chat, type='primary')
# Move K outside of the sidebar expander
K = st.sidebar.number_input(' (#)Summary of prompts to consider', min_value=3, max_value=1000)
# Set up the Streamlit app layout
st.title("Personalized chatbot")
# Create an OpenAI instance
llm = HuggingFaceEndpoint(repo_id='mistralai/Mistral-7B-Instruct-v0.2',
temperature=0.3,
model_kwargs = {"max_length":128},
huggingfacehub_api_token = os.environ["HUGGINGFACEHUB_API_TOKEN"])
# Create a ConversationEntityMemory object if not already created
if 'entity_memory' not in st.session_state:
st.session_state.entity_memory = ConversationEntityMemory(llm=llm, k=K )
# Create the ConversationChain object with the specified configuration
Conversation = ConversationChain(llm=llm,
prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE,
memory=st.session_state.entity_memory
)
# Get the user input
user_input = get_text()
# Generate the output using the ConversationChain object and the user input, and add the input/output to the session
if user_input:
output = Conversation.run(input=user_input)
st.session_state.past.append(user_input)
st.session_state.generated.append(output)
# Display the conversation history using an expander, and allow the user to download it
with st.expander("Conversation", expanded=True):
for i in range(len(st.session_state['generated'])-1, -1, -1):
st.info(st.session_state["past"][i],icon="🧐")
st.success(st.session_state["generated"][i], icon="🤖")
# Display stored conversation sessions in the sidebar
for i, sublist in enumerate(st.session_state.stored_session):
with st.sidebar.expander(label= f"Conversation-Session:{i}"):
st.write(sublist)
# Allow the user to clear all stored conversation sessions
if st.session_state.stored_session:
if st.sidebar.checkbox("Clear-all"):
del st.session_state.stored_session |