Spaces:
Sleeping
Sleeping
carlotamdeluna
commited on
Commit
•
cfc401a
1
Parent(s):
339c71f
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,24 @@
|
|
1 |
-
import subprocess
|
2 |
|
3 |
-
# Instalar un paquete utilizando pip desde Python
|
4 |
-
subprocess.check_call(["pip", "install", "langchain_community","langchain"])
|
5 |
|
6 |
-
|
7 |
-
from langchain.chains import LLMChain
|
8 |
-
from langchain.chains import ConversationChain
|
9 |
-
#importacipones adicionales
|
10 |
import streamlit as st
|
11 |
from langchain.chains import ConversationChain
|
12 |
-
from langchain.memory import ConversationBufferMemory
|
13 |
-
from langchain.chains import ConversationChain
|
14 |
-
from langchain.prompts import PromptTemplate
|
15 |
-
|
16 |
from langchain.chains.conversation.memory import ConversationEntityMemory
|
17 |
from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE
|
18 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
19 |
import os
|
20 |
-
from
|
21 |
-
|
22 |
-
|
23 |
-
st.set_page_config(page_title= "bot", layout="wide")
|
24 |
|
25 |
-
#Interfaz
|
26 |
-
st.title("Maqueta")
|
27 |
|
28 |
-
#
|
29 |
|
30 |
-
|
31 |
|
32 |
-
llm = HuggingFaceEndpoint(repo_id='tiiuae/falcon-7b',
|
33 |
-
model_kwargs = {"max_length":64},
|
34 |
-
temperature=0.5,
|
35 |
-
huggingfacehub_api_token = os.environ["HUGGINGFACEHUB_API_TOKEN"])
|
36 |
-
|
37 |
-
#memory
|
38 |
|
|
|
|
|
|
|
39 |
if "generated" not in st.session_state:
|
40 |
st.session_state["generated"] = []
|
41 |
if "past" not in st.session_state:
|
@@ -45,9 +28,7 @@ if "input" not in st.session_state:
|
|
45 |
if "stored_session" not in st.session_state:
|
46 |
st.session_state["stored_session"] = []
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
def get_text():
|
52 |
"""
|
53 |
Get the user input text.
|
@@ -60,24 +41,84 @@ def get_text():
|
|
60 |
label_visibility='hidden')
|
61 |
return input_text
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
-
#op1
|
67 |
-
memory = ConversationBufferMemory()
|
68 |
-
Conversation = ConversationChain(llm = llm,
|
69 |
-
memory = memory)
|
70 |
|
71 |
-
#opc2:BUFFER WINDOW MEMORY
|
72 |
-
memory2 = ConversationBufferWindowMemory(k=3) #k hace referencia al numero de conversaiones que queremos almacenar
|
73 |
-
conversation_buff2 = ConversationChain(llm = llm,
|
74 |
-
memory = memory2)
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
-
submit = st.button("Generate")
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
2 |
|
3 |
+
# Import necessary libraries
|
|
|
|
|
|
|
4 |
import streamlit as st
|
5 |
from langchain.chains import ConversationChain
|
|
|
|
|
|
|
|
|
6 |
from langchain.chains.conversation.memory import ConversationEntityMemory
|
7 |
from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE
|
|
|
8 |
import os
|
9 |
+
from getpass import getpass
|
10 |
+
from langchain import HuggingFaceHub
|
11 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
12 |
|
|
|
|
|
13 |
|
14 |
+
#token de hugging face
|
15 |
|
16 |
+
os.environ['HUGGINGFACEHUB_API_TOKEN'] = "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"
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Set Streamlit page configuration
|
20 |
+
st.set_page_config(page_title='🧠MemoryBot🤖', layout='wide')
|
21 |
+
# Initialize session states. Un session state es como un diccionario
|
22 |
if "generated" not in st.session_state:
|
23 |
st.session_state["generated"] = []
|
24 |
if "past" not in st.session_state:
|
|
|
28 |
if "stored_session" not in st.session_state:
|
29 |
st.session_state["stored_session"] = []
|
30 |
|
31 |
+
# Define function to get user input
|
|
|
|
|
32 |
def get_text():
|
33 |
"""
|
34 |
Get the user input text.
|
|
|
41 |
label_visibility='hidden')
|
42 |
return input_text
|
43 |
|
44 |
+
# #parte para hacer un chat nuevo
|
45 |
+
def new_chat():
|
46 |
+
"""
|
47 |
+
Clears session state and starts a new chat.
|
48 |
+
"""
|
49 |
+
save = []
|
50 |
+
for i in range(len(st.session_state['generated'])-1, -1, -1):
|
51 |
+
save.append("User:" + st.session_state["past"][i])
|
52 |
+
save.append("Bot:" + st.session_state["generated"][i])
|
53 |
+
st.session_state["stored_session"].append(save)
|
54 |
+
st.session_state["generated"] = []
|
55 |
+
st.session_state["past"] = []
|
56 |
+
st.session_state["input"] = ""
|
57 |
+
st.session_state.entity_memory.entity_store = {}
|
58 |
+
st.session_state.entity_memory.buffer.clear()
|
59 |
+
|
60 |
+
# Add a button to start a new chat
|
61 |
+
st.sidebar.button("New Chat", on_click = new_chat, type='primary')
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
64 |
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# Move K outside of the sidebar expander
|
67 |
+
K = st.sidebar.number_input(' (#)Summary of prompts to consider', min_value=3, max_value=1000)
|
68 |
+
|
69 |
+
# Set up the Streamlit app layout
|
70 |
+
st.title("Personalized chatbot")
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
# Create an OpenAI instance
|
75 |
+
llm = HuggingFaceEndpoint(repo_id='meta-llama/Llama-2-7b-chat-hf',
|
76 |
+
max_length=128,
|
77 |
+
temperature=0.5,
|
78 |
+
token="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")
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
# Create a ConversationEntityMemory object if not already created
|
87 |
+
if 'entity_memory' not in st.session_state:
|
88 |
+
st.session_state.entity_memory = ConversationEntityMemory(llm=llm, k=K )
|
89 |
+
|
90 |
+
# Create the ConversationChain object with the specified configuration
|
91 |
+
Conversation = ConversationChain(
|
92 |
+
llm=llm,
|
93 |
+
prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE,
|
94 |
+
memory=st.session_state.entity_memory
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
# Get the user input
|
99 |
+
user_input = get_text()
|
100 |
+
|
101 |
+
# Generate the output using the ConversationChain object and the user input, and add the input/output to the session
|
102 |
+
if user_input:
|
103 |
+
output = Conversation.run(input=user_input)
|
104 |
+
st.session_state.past.append(user_input)
|
105 |
+
st.session_state.generated.append(output)
|
106 |
+
|
107 |
+
|
108 |
+
# Display the conversation history using an expander, and allow the user to download it
|
109 |
+
with st.expander("Conversation", expanded=True):
|
110 |
+
for i in range(len(st.session_state['generated'])-1, -1, -1):
|
111 |
+
st.info(st.session_state["past"][i],icon="🧐")
|
112 |
+
st.success(st.session_state["generated"][i], icon="🤖")
|
113 |
|
114 |
|
|
|
115 |
|
116 |
+
# Display stored conversation sessions in the sidebar
|
117 |
+
for i, sublist in enumerate(st.session_state.stored_session):
|
118 |
+
with st.sidebar.expander(label= f"Conversation-Session:{i}"):
|
119 |
+
st.write(sublist)
|
120 |
|
121 |
+
# Allow the user to clear all stored conversation sessions
|
122 |
+
if st.session_state.stored_session:
|
123 |
+
if st.sidebar.checkbox("Clear-all"):
|
124 |
+
del st.session_state.stored_session
|