from langchain_community.llms import Ollama import streamlit as st from langchain.chains import LLMChain from langchain.chains import ConversationChain #importacipones adicionales import streamlit as st from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationChain from langchain.prompts import PromptTemplate from langchain.chains.conversation.memory import ConversationEntityMemory from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE from langchain_community.llms import HuggingFaceEndpoint import os from langchain.llms import Ollama st.set_page_config(page_title= "bot", layout="wide") #Interfaz st.title("Maqueta") #template #llm llm = HuggingFaceEndpoint(repo_id='mistralai/Mistral-7B-v0.1', max_length=128, temperature=0.5) #memory conversation_buf = ConversationChain(llm = llm, memory = ConversationBufferMemory(), verbose = True) if "generated" not in st.session_state: st.session_state["generated"] = [] if "past" not in st.session_state: st.session_state["past"] = [] if "input" not in st.session_state: st.session_state["input"] = "" if "stored_session" not in st.session_state: st.session_state["stored_session"] = [] def get_text(): """ Get the user input text. Returns: (str): The text entered by the user """ input_text = st.text_input("You: ", st.session_state["input"], key="input", placeholder="Your AI assistant here! Ask me anything ...", label_visibility='hidden') return input_text user_input = get_text() if 'entity memory' not in st.session_state: st.session_state.entity_memory = ConversationEntityMemory(llm = llm,k=10) Conversation = ConversationChain(llm = llm, prompt= ENTITY_MEMORY_CONVERSATION_TEMPLATE, memory = st.session_state.entity_memory) while True: output = Conversation.run(input=user_input) st.session_state.past.append(user_input) st.session_state.generated.append(output)