cawacci's picture
Upload app.py
d2791db
# --------------------------------------
# Chat with Documents
# キカガク 2023.4月期 最終成果アプリ
# Copyright. cawacci
# --------------------------------------
# --------------------------------------
# Libraries
# --------------------------------------
import os
import time
import gc # メモリ解放
import re # 正規表現で文章をクリーンアップ
import regex # 漢字抽出で利用
# HuggingFace
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# OpenAI
import openai
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
# LangChain
import langchain
from langchain.llms import HuggingFacePipeline
from transformers import pipeline
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import LLMChain, VectorDBQA
from langchain.vectorstores import Chroma
from langchain import PromptTemplate, ConversationChain
from langchain.chains.question_answering import load_qa_chain # QA Chat
from langchain.document_loaders import SeleniumURLLoader # URL取得
from langchain.docstore.document import Document # テキストをドキュメント化
from langchain.memory import ConversationSummaryBufferMemory # チャット履歴
from typing import Any
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.tools import DuckDuckGoSearchRun
# Gradio
import gradio as gr
from pypdf import PdfReader
import requests # DeepL API request
# Mecab
import MeCab
# --------------------------------------
# ユーザ別セッションの変数値を記録するクラス
#  (参考)https://blog.shikoan.com/gradio-state/
# --------------------------------------
class SessionState:
def __init__(self):
# Hugging Face
self.tokenizer = None
self.pipe = None
self.model = None
# LangChain
self.llm = None
self.embeddings = None
self.current_model = ""
self.current_embedding = ""
self.db = None # Vector DB
self.memory = None # Langchain Chat Memory
self.conversation_chain = None # ConversationChain
self.query_generator = None # Query Refiner with Chat history
self.qa_chain = None # load_qa_chain
self.web_summary_chain = None # Summarize web search result
self.embedded_urls = []
self.similarity_search_k = None # No. of similarity search documents to find.
self.summarization_mode = None # Stuff / Map Reduce / Refine
# Apps
self.dialogue = [] # Recent Chat History for display
# --------------------------------------
# Empty Cache
# --------------------------------------
def cache_clear(self):
if torch.cuda.is_available():
torch.cuda.empty_cache() # GPU Memory Clear
gc.collect() # CPU Memory Clear
# --------------------------------------
# Clear Models (llm: llm model, embd: embeddings, db: vectordb)
# --------------------------------------
def clear_memory(self, llm=False, embd=False, db=False):
# DB
if db and self.db:
self.db.delete_collection()
self.db = None
self.embedded_urls = []
# Embeddings model
if llm or embd:
self.embeddings = None
self.current_embedding = ""
self.qa_chain = None
# LLM model
if llm:
self.llm = None
self.pipe = None
self.model = None
self.current_model = ""
self.tokenizer = None
self.memory = None
self.chat_history = [] # ←必要性を要検証
self.cache_clear()
# --------------------------------------
# メモリを使用しない ConversationChainを自作
# --------------------------------------
from typing import Dict, List
from langchain.chains.conversation.prompt import PROMPT
from langchain.chains.llm import LLMChain
from langchain.pydantic_v1 import Extra, Field, root_validator
from langchain.schema import BasePromptTemplate
class ConversationChain(LLMChain):
"""Chain to have a conversation without loading context from memory.
Example:
.. code-block:: python
from langchain import ConversationChainWithoutMemory, OpenAI
conversation = ConversationChainWithoutMemory(llm=OpenAI())
"""
prompt: BasePromptTemplate = PROMPT
"""Default conversation prompt to use."""
input_key: str = "input" #: :meta private:
output_key: str = "response" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Use this since so some prompt vars come from history."""
return [self.input_key]
@root_validator()
def validate_prompt_input_variables(cls, values: Dict) -> Dict:
"""Validate that prompt input variables are consistent without memory."""
input_key = values["input_key"]
prompt_variables = values["prompt"].input_variables
if input_key not in prompt_variables:
raise ValueError(
f"The prompt expects {prompt_variables}, but {input_key} is not found."
)
return values
# --------------------------------------
# 自作TextSplitter(テキストをLLMのトークン数内に分割)
# (参考)https://www.sato-susumu.com/entry/2023/04/30/131338
#  → 「!」、「?」、「)」、「.」、「!」、「?」、「,」などを追加
# --------------------------------------
class JPTextSplitter(RecursiveCharacterTextSplitter):
def __init__(self, **kwargs: Any):
separators = ["\n\n", "\n", "。", "!", "?", ")","、", ".", "!", "?", ",", " ", ""]
super().__init__(separators=separators, **kwargs)
# チャンクの分割
chunk_size = 512
chunk_overlap = 35
text_splitter = JPTextSplitter(
chunk_size = chunk_size, # チャンクの最大文字数
chunk_overlap = chunk_overlap, # オーバーラップの最大文字数
)
# --------------------------------------
# 文中から人名を抽出
# --------------------------------------
def name_detector(text: str) -> list:
mecab = MeCab.Tagger()
mecab.parse('') # ←バグ対応
node = mecab.parseToNode(text).next
names = []
while node:
if node.feature.split(',')[3] == "姓":
if node.next and node.next.feature.split(',')[3] == "名":
names.append(str(node.surface) + str(node.next.surface))
else:
names.append(node.surface)
if node.feature.split(',')[3] == "名":
if node.prev and node.prev.feature.split(',')[3] == "姓":
pass
else:
names.append(str(node.surface))
node = node.next
# ユニークな値を抽出し、その後漢字を含む値のみとする
names = filter_kanji(list(set(names)))
return names
# --------------------------------------
# リストから漢字を含む値だけを抽出する
# --------------------------------------
def filter_kanji(lst) -> list:
def contains_kanji(s):
p = regex.compile(r'\p{Script=Han}+')
return bool(p.search(s))
return [item for item in lst if contains_kanji(item)]
# --------------------------------------
# DeepL でメモリを翻訳しトークン数を削減(OpenAIモデル利用時)
# --------------------------------------
DEEPL_API_ENDPOINT = "https://api-free.deepl.com/v2/translate"
DEEPL_API_KEY = os.getenv("DEEPL_API_KEY")
def deepl_memory(ss: SessionState) -> (SessionState):
if ss.current_model == "gpt-3.5-turbo":
# メモリから会話履歴を取得
user_message = ss.memory.chat_memory.messages[-2].content
ai_message = ss.memory.chat_memory.messages[-1].content
text = [user_message, ai_message]
# DeepL設定
params = {
"auth_key": DEEPL_API_KEY,
"text": text,
"target_lang": "EN",
"source_lang": "JA",
"tag_handling": "xml",
"igonere_tags": "x",
}
request = requests.post(DEEPL_API_ENDPOINT, data=params)
request.raise_for_status() # 応答のステータスコードがエラーの場合は例外を発生させます。
response = request.json()
# JSONから翻訳文を取得
user_message = response["translations"][0]["text"]
ai_message = response["translations"][1]["text"]
# memoryの最後の会話を削除し、翻訳文を追加
ss.memory.chat_memory.messages = ss.memory.chat_memory.messages[:-2]
ss.memory.chat_memory.add_user_message(user_message)
ss.memory.chat_memory.add_ai_message(ai_message)
return ss
# --------------------------------------
# DuckDuckGo Web検索結果を入力プロンプトに追加
# --------------------------------------
# DEEPL_API_ENDPOINT = "https://api-free.deepl.com/v2/translate"
# DEEPL_API_KEY = os.getenv("DEEPL_API_KEY")
def web_search(ss: SessionState, query) -> (SessionState, str):
search = DuckDuckGoSearchRun(verbose=True)
names = []
names.extend(name_detector(query))
for i in range(3):
web_result = search(query)
if ss.current_model == "gpt-3.5-turbo":
text = [query, web_result]
params = {
"auth_key": DEEPL_API_KEY,
"text": text,
"target_lang": "EN",
"source_lang": "JA",
"tag_handling": "xml",
"ignore_tags": "x",
}
request = requests.post(DEEPL_API_ENDPOINT, data=params)
response = request.json()
query_eng = response["translations"][0]["text"]
web_result_eng = response["translations"][1]["text"]
web_result_eng = ss.web_summary_chain({'query': query_eng, 'context': web_result_eng})['text']
if "$$NO INFO$$" in web_result_eng:
web_result_eng = ss.web_summary_chain({'query': query_eng, 'context': web_result_eng})['text']
if "$$NO INFO$$" not in web_result_eng:
break
# 検索結果から人名を抽出し、テキスト化
names.extend(name_detector(web_result))
if len(names)==0:
names = ""
elif len(names)==1:
names = names[0]
else:
names = ", ".join(names)
# Web検索結果を含むQueryを渡す。
if names != "":
web_query = f"""
{query_eng}
Use the following Suggested Answer as a reference to answer the question above in Japanese. When translating names of people, refer to Names as a translation guide.
Suggested Answer: {web_result_eng}
Names: {names}
""".strip()
else:
web_query = query_eng + "\nUse the following Suggested Answer as a reference to answer the question above in the Japanese.\n===\nSuggested Answer: " + web_result_eng + "\n"
return ss, web_query
# --------------------------------------
# LangChain カスタムプロンプト各種
# llama tokenizer
# https://belladoreai.github.io/llama-tokenizer-js/example-demo/build/
# OpenAI tokenizer
# https://platform.openai.com/tokenizer
# --------------------------------------
# --------------------------------------
# Conversation Chain Template
# --------------------------------------
# Tokens: OpenAI 104/ Llama 105 <- In Japanese: Tokens: OpenAI 191/ Llama 162
sys_chat_message = """
You are an AI concierge who carefully answers questions from customers based on references.
You understand what the customer wants to know, and give many specific details in Japanese
using sentences extracted from the following references when available. If you do not know
the answer, do not make up an answer and reply, "誠に申し訳ございませんが、その点についてはわかりかねます".
""".replace("\n", "")
chat_common_format = """
===
Question: {query}
日本語の回答: """
chat_template_std = f"{sys_chat_message}{chat_common_format}"
chat_template_llama2 = f"<s>[INST] <<SYS>>{sys_chat_message}<</SYS>>{chat_common_format}[/INST]"
# --------------------------------------
# QA Chain Template (Stuff)
# --------------------------------------
# Tokens: OpenAI 113/ Llama 111 <- In Japanese: Tokens: OpenAI 256/ Llama 225
# sys_qa_message = """
# You are an AI concierge who carefully answers questions from customers based on references.
# You understand what the customer wants to know from the Conversation History and Question,
# and give a specific answer in Japanese using sentences extracted from the following references.
# If you do not know the answer, do not make up an answer and reply,
# "誠に申し訳ございませんが、その点についてはわかりかねます".
# """.replace("\n", "")
# qa_common_format = """
# ===
# Question: {query}
# References: {context}
# ===
# Conversation History:
# {chat_history}
# ===
# 日本語の回答: """
qa_common_format = """
===
Question: {query}
References: {context}
日本語の回答: """
qa_template_std = f"{sys_chat_message}{qa_common_format}"
qa_template_llama2 = f"<s>[INST] <<SYS>>{sys_chat_message}<</SYS>>{qa_common_format}[/INST]"
# qa_template_std = f"{sys_qa_message}{qa_common_format}"
# qa_template_llama2 = f"<s>[INST] <<SYS>>{sys_qa_message}<</SYS>>{qa_common_format}[/INST]"
# --------------------------------------
# QA Chain Template (Map Reduce)
# --------------------------------------
# 1. 会話履歴と最新の質問から、質問文を生成するchain のプロンプト
query_generator_message = """
Referring to the "Conversation History", especially to the most recent conversation,
reformat the user's "Additional Question" into a specific question in Japanese by
filling in the missing subject, verb, objects, complements,and other necessary
information to get a better search result. Answer in 日本語(Japanese).
""".replace("\n", "")
query_generator_common_format = """
===
[Conversation History]
{chat_history}
[Additional Question] {query}
明確な質問文: """
query_generator_template_std = f"{query_generator_message}{query_generator_common_format}"
query_generator_template_llama2 = f"<s>[INST] <<SYS>>{query_generator_message}<</SYS>>{query_generator_common_format}[/INST]"
# 2. 生成された質問文を用いて、参考文献を要約するchain のプロンプト
question_prompt_message = """
From the following references, extract key information relevant to the question
and summarize it in a natural English sentence with clear subject, verb, object,
and complement.
""".replace("\n", "")
question_prompt_common_format = """
===
[Question] {query}
[References] {context}
[Key Information] """
question_prompt_template_std = f"{question_prompt_message}{question_prompt_common_format}"
question_prompt_template_llama2 = f"<s>[INST] <<SYS>>{question_prompt_message}<</SYS>>{question_prompt_common_format}[/INST]"
# 3. 生成された質問文とベクターデータベースの要約をもとに、回答を行うchain のプロンプト
combine_prompt_message = """
You are an AI concierge who carefully answers questions from customers based on references.
Provide a specific answer in Japanese using sentences extracted from the following references.
If you do not know the answer, do not make up an answer and reply,
"誠に申し訳ございませんが、その点についてはわかりかねます".
""".replace("\n", "")
combine_prompt_common_format = """
===
Question: {query}
Reference: {summaries}
日本語の回答: """
combine_prompt_template_std = f"{combine_prompt_message}{combine_prompt_common_format}"
combine_prompt_template_llama2 = f"<s>[INST] <<SYS>>{combine_prompt_message}<</SYS>>{combine_prompt_common_format}[/INST]"
# --------------------------------------
# ConversationSummaryBufferMemoryの要約プロンプト
# ソース → https://github.com/langchain-ai/langchain/blob/894c272a562471aadc1eb48e4a2992923533dea0/langchain/memory/prompt.py#L26-L49
# --------------------------------------
# Tokens: OpenAI 212/ Llama 214 <- In Japanese: Tokens: OpenAI 397/ Llama 297
conversation_summary_template = """
Using the example as a guide, compose a summary in English that gives an overview of the conversation by summarizing the "current summary" and the "new conversation".
===
Example
[Current Summary] Customer asks AI what it thinks about Artificial Intelligence, AI says Artificial Intelligence is a good tool.
[New Conversation]
Human: なぜ人工知能が良いツールだと思いますか?
AI: 人工知能は「人間の可能性を最大限に引き出すことを助ける」からです。
[New Summary] Customer asks what you think about Artificial Intelligence, and AI responds that it is a good force that helps humans reach their full potential.
===
[Current Summary] {summary}
[New Conversation]
{new_lines}
[New Summary]
""".strip()
# モデル読み込み
def load_models(
ss: SessionState,
model_id: str,
embedding_id: str,
openai_api_key: str,
load_in_8bit: bool,
verbose: bool,
temperature: float,
similarity_search_k: int,
summarization_mode: str,
min_length: int,
max_new_tokens: int,
top_k: int,
top_p: float,
repetition_penalty: float,
num_return_sequences: int,
) -> (SessionState, str):
# --------------------------------------
# 変数の保存
# --------------------------------------
ss.similarity_search_k = similarity_search_k
ss.summarization_mode = summarization_mode
# --------------------------------------
# OpenAI API KEYの確認
# --------------------------------------
if (model_id == "gpt-3.5-turbo" or embedding_id == "text-embedding-ada-002"):
# 前処理
if not os.environ["OPENAI_API_KEY"]:
status_message = "❌ OpenAI API KEY を設定してください"
return ss, status_message
# --------------------------------------
# LLMの設定
# --------------------------------------
# OpenAI Model
if model_id == "gpt-3.5-turbo":
ss.clear_memory(llm=True, db=True)
ss.llm = ChatOpenAI(
model_name = model_id,
temperature = temperature,
verbose = verbose,
max_tokens = max_new_tokens,
)
# Hugging Face GPT Model
else:
ss.clear_memory(llm=True, db=True)
if model_id == "rinna/bilingual-gpt-neox-4b-instruction-sft":
ss.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
else:
ss.tokenizer = AutoTokenizer.from_pretrained(model_id)
ss.model = AutoModelForCausalLM.from_pretrained(
model_id,
load_in_8bit = load_in_8bit,
torch_dtype = torch.float16,
device_map = "auto",
)
ss.pipe = pipeline(
"text-generation",
model = ss.model,
tokenizer = ss.tokenizer,
min_length = min_length,
max_new_tokens = max_new_tokens,
do_sample = True,
top_k = top_k,
top_p = top_p,
repetition_penalty = repetition_penalty,
num_return_sequences = num_return_sequences,
temperature = temperature,
)
ss.llm = HuggingFacePipeline(pipeline=ss.pipe)
# --------------------------------------
# 埋め込みモデルの設定
# --------------------------------------
if ss.current_embedding == embedding_id:
pass
else:
# Reset embeddings and vectordb
ss.clear_memory(embd=True, db=True)
if embedding_id == "None":
pass
# OpenAI
elif embedding_id == "text-embedding-ada-002":
ss.embeddings = OpenAIEmbeddings()
# Hugging Face
else:
ss.embeddings = HuggingFaceEmbeddings(model_name=embedding_id)
# --------------------------------------
# チェーンの設定
#---------------------------------------
ss = set_chains(ss, summarization_mode)
# --------------------------------------
# 現在のモデル名を SessionStateオブジェクトに保存
#---------------------------------------
ss.current_model = model_id
ss.current_embedding = embedding_id
# Status Message
status_message = "✅ LLM: " + ss.current_model + ", embeddings: " + ss.current_embedding
return ss, status_message
# --------------------------------------
# Conversation/QA Chain 呼び出し統合
# --------------------------------------
def set_chains(ss: SessionState, summarization_mode) -> SessionState:
# モデルに合わせて chat_template を設定
human_prefix = "Human: "
ai_prefix = "AI: "
chat_template = chat_template_std
qa_template = qa_template_std
query_generator_template = query_generator_template_std
question_template = question_prompt_template_std
combine_template = combine_prompt_template_std
if ss.current_model == "rinna/bilingual-gpt-neox-4b-instruction-sft":
# Rinnaモデル向けの設定(改行コード修正、メモリ用prefix (公式ページ参照)
chat_template = chat_template.replace("\n", "<NL>")
qa_template = qa_template.replace("\n", "<NL>")
query_generator_template = query_generator_template_std.replace("\n", "<NL>")
question_template = question_prompt_template_std.replace("\n", "<NL>")
combine_template = combine_prompt_template_std.replace("\n", "<NL>")
human_prefix = "ユーザー: "
ai_prefix = "システム: "
elif ss.current_model.startswith("elyza/ELYZA-japanese-Llama-2-7b"):
# ELYZAモデル向けのテンプレート設定
chat_template = chat_template_llama2
qa_template = qa_template_llama2
query_generator_template = query_generator_template_llama2
question_template = question_prompt_template_llama2
combine_template = combine_prompt_template_llama2
# --------------------------------------
# メモリの設定
# --------------------------------------
if ss.memory is None:
conversation_summary_prompt = PromptTemplate(input_variables=['summary', 'new_lines'], template=conversation_summary_template)
ss.memory = ConversationSummaryBufferMemory(
llm = ss.llm,
memory_key = "chat_history",
input_key = "query",
output_key = "output_text",
return_messages = False,
human_prefix = human_prefix,
ai_prefix = ai_prefix,
max_token_limit = 1024,
prompt = conversation_summary_prompt,
)
# --------------------------------------
# Conversation/QAチェーンの設定
# --------------------------------------
if ss.query_generator is None:
query_generator_prompt = PromptTemplate(template=query_generator_template, input_variables = ["chat_history", "query"])
ss.query_generator = LLMChain(llm=ss.llm, prompt=query_generator_prompt, verbose=True)
if ss.conversation_chain is None:
# chat_prompt = PromptTemplate(input_variables=['query', 'chat_history'], template=chat_template)
chat_prompt = PromptTemplate(input_variables=['query'], template=chat_template)
ss.conversation_chain = ConversationChain(
llm = ss.llm,
prompt = chat_prompt,
# memory = ss.memory,
input_key = "query",
output_key = "output_text",
verbose = True,
)
if ss.qa_chain is None:
if summarization_mode == "stuff":
# qa_prompt = PromptTemplate(input_variables=['context', 'query', 'chat_history'], template=qa_template)
qa_prompt = PromptTemplate(input_variables=['context', 'query'], template=qa_template)
# ss.qa_chain = load_qa_chain(ss.llm, chain_type="stuff", memory=ss.memory, prompt=qa_prompt)
ss.qa_chain = load_qa_chain(ss.llm, chain_type="stuff", prompt=qa_prompt, verbose=True)
elif summarization_mode == "map_reduce":
question_prompt = PromptTemplate(template=question_template, input_variables=["context", "query"])
combine_prompt = PromptTemplate(template=combine_template, input_variables=["summaries", "query"])
# ss.qa_chain = load_qa_chain(ss.llm, chain_type="map_reduce", return_map_steps=True, memory=ss.memory, question_prompt=question_prompt, combine_prompt=combine_prompt)
ss.qa_chain = load_qa_chain(ss.llm, chain_type="map_reduce", return_map_steps=True, question_prompt=question_prompt, combine_prompt=combine_prompt, verbose=True)
if ss.web_summary_chain is None:
question_prompt = PromptTemplate(template=question_template, input_variables=["context", "query"])
ss.web_summary_chain = LLMChain(llm=ss.llm, prompt=question_prompt, verbose=True)
return ss
def initialize_db(ss: SessionState) -> SessionState:
# client = chromadb.PersistentClient(path="./db")
ss.db = Chroma(
collection_name = "user_reference",
embedding_function = ss.embeddings,
# client = client
)
return ss
def embedding_process(ss: SessionState, ref_documents: Document) -> SessionState:
# --------------------------------------
# 文章構成と不要な文字列の削除
# --------------------------------------
for i in range(len(ref_documents)):
content = ref_documents[i].page_content.strip()
# --------------------------------------
# PDFの場合は読み取りエラー対策で文書修正を強めに実施
# --------------------------------------
if ".pdf" in ref_documents[i].metadata['source']:
pdf_replacement_sets = [
('\n ', '**PLACEHOLDER+SPACE**'),
('\n\u3000', '**PLACEHOLDER+SPACE**'),
('.\n', '。**PLACEHOLDER**'),
(',\n', '。**PLACEHOLDER**'),
('?\n', '。**PLACEHOLDER**'),
('!\n', '。**PLACEHOLDER**'),
('!\n', '。**PLACEHOLDER**'),
('。\n', '。**PLACEHOLDER**'),
('!\n', '!**PLACEHOLDER**'),
(')\n', '!**PLACEHOLDER**'),
(']\n', '!**PLACEHOLDER**'),
('?\n', '?**PLACEHOLDER**'),
(')\n', '?**PLACEHOLDER**'),
('】\n', '?**PLACEHOLDER**'),
]
for original, replacement in pdf_replacement_sets:
content = content.replace(original, replacement)
content = content.replace(" ", "")
# --------------------------------------
# 不要文字列・空白の削除
remove_texts = ["\n", "\r", " "]
for remove_text in remove_texts:
content = content.replace(remove_text, "")
# タブや連続空白をシングルスペースに変換
replace_texts = ["\t", "\u3000"]
for replace_text in replace_texts:
content = content.replace(replace_text, " ")
# PDFの正当な改行をもとに戻す。
if ".pdf" in ref_documents[i].metadata['source']:
content = content.replace('**PLACEHOLDER**', '\n').replace('**PLACEHOLDER+SPACE**', '\n ')
ref_documents[i].page_content = content
# --------------------------------------
# チャンクに分割
texts = text_splitter.split_documents(ref_documents)
# --------------------------------------
# multi-e5 モデルの学習環境に合わせて文言を追加
# https://hironsan.hatenablog.com/entry/2023/07/05/073150
# --------------------------------------
if ss.current_embedding == "intfloat/multilingual-e5-large":
for i in range(len(texts)):
texts[i].page_content = "passage:" + texts[i].page_content
# vectordb の初期化
if ss.db is None:
ss = initialize_db(ss)
# db に埋め込み
# ss.db = Chroma.from_documents(texts, ss.embeddings)
ss.db.add_documents(documents=texts, embedding=ss.embeddings)
return ss
def embed_ref(ss: SessionState, urls: str, fileobj: list, header_lim: int, footer_lim: int) -> (SessionState, str):
# --------------------------------------
# モデルロード確認
# --------------------------------------
if ss.llm is None or ss.embeddings is None:
status_message = "❌ LLM/Embeddingモデルが登録されていません。"
return ss, status_message
url_flag = "-"
pdf_flag = "-"
# --------------------------------------
# URLの読み込みとvectordb登録
# --------------------------------------
# URLリストの前処理(リスト化、重複削除、非URL排除)
urls = list({url for url in urls.split("\n") if url and "://" in url})
if urls:
# 登録済みURL(ss.embedded_urls)との重複を排除。登録済みリストに登録
urls = [url for url in urls if url not in ss.embedded_urls]
ss.embedded_urls.extend(urls)
# ウェブページの読み込み
loader = SeleniumURLLoader(urls=urls)
ref_documents = loader.load()
# 埋め込み処理の実行
ss = embedding_process(ss, ref_documents)
url_flag = "✅ 登録済"
# --------------------------------------
# PDFのヘッダーとフッターを除去してvectordb登録
#  https://pypdf.readthedocs.io/en/stable/user/extract-text.html
# --------------------------------------
if fileobj is None:
pass
else:
# ファイル名リストを取得
pdf_paths = []
for path in fileobj:
pdf_paths.append(path.name)
# リストの初期化
ref_documents = []
# 各PDFファイルを読み込み
for pdf_path in pdf_paths:
pdf = PdfReader(pdf_path)
body = []
def visitor_body(text, cm, tm, font_dict, font_size):
y = tm[5]
if y > footer_lim and y < header_lim: # y座標がヘッダーとフッターの間にあるかどうかを確認
parts.append(text)
for page in pdf.pages:
parts = []
page.extract_text(visitor_text=visitor_body)
body.append("".join(parts))
body = "\n".join(body)
# パスからファイル名のみを取得
filename = os.path.basename(pdf_path)
# 取得テキスト → LangChain ドキュメント変換
ref_documents.append(Document(page_content=body, metadata={"source": filename}))
# 埋め込み処理の実行
ss = embedding_process(ss, ref_documents)
pdf_flag = "✅ 登録済"
langchain.debug=True
status_message = "URL: " + url_flag + " / PDF: " + pdf_flag
return ss, status_message
def clear_db(ss: SessionState) -> (SessionState, str):
if ss.db is None:
status_message = "❌ 参照データが登録されていません。"
return ss, status_message
try:
ss.db.delete_collection()
status_message = "✅ 参照データを削除しました。"
except NameError:
status_message = "❌ 参照データが登録されていません。"
return ss, status_message
# ----------------------------------------------------------------------------
# query入力 ▶ [def user] ▶ [ def bot ] ▶ [def show_response] ▶ チャットボット画面
# ⬇ ⬇ ⬆
# チャットボット画面 [qa_predict / conversation_predict]
# ----------------------------------------------------------------------------
def user(ss: SessionState, query) -> (SessionState, list):
# 会話履歴が一定数を超えた場合は、最初の履歴を削除する
if len(ss.dialogue) > 20:
ss.dialogue.pop(0)
ss.dialogue = ss.dialogue + [(query, None)] # 会話履歴(None はボットの回答欄=空欄)
chat_history = ss.dialogue
# チャット画面=chat_history
return ss, chat_history
def bot(ss: SessionState, query, qa_flag, web_flag, summarization_mode) -> (SessionState, str):
original_query = query
if ss.llm is None:
if ss.dialogue:
response = "LLMが設定されていません。設定画面で任意のモデルを選択してください。"
ss.dialogue[-1] = (ss.dialogue[-1][0], response)
return ss, ""
elif qa_flag is True and ss.embeddings is None:
if ss.dialogue:
response = "Embeddingモデルが設定されていません。設定画面で任意のモデルを選択してください。"
ss.dialogue[-1] = (ss.dialogue[-1][0], response)
return ss, ""
elif qa_flag is True and ss.db is None:
if ss.dialogue:
response = "参照データが登録されていません。"
ss.dialogue[-1] = (ss.dialogue[-1][0], response)
return ss, ""
# Refine query
history = ss.memory.load_memory_variables({})
if history['chat_history'] != "":
# チャット履歴からクエリをリファイン
query = ss.query_generator({"query": query, "chat_history": history})['text']
# QA Model
if qa_flag is True and ss.embeddings is not None and ss.db is not None:
if web_flag:
ss, web_query = web_search(ss, query)
ss = qa_predict(ss, web_query)
ss.memory.chat_memory.messages[-2].content = query
else:
ss = qa_predict(ss, query)
# Chat Model
else:
if web_flag:
ss, web_query = web_search(ss, query)
ss = chat_predict(ss, web_query)
ss.memory.chat_memory.messages[-2].content = query
else:
ss = chat_predict(ss, query)
# GPTモデル利用時はDeepLでメモリを英語化
ss = deepl_memory(ss)
return ss, "" # ssとquery欄(空欄)
def chat_predict(ss: SessionState, query) -> SessionState:
response = ss.conversation_chain.predict(query=query)
ss.memory.chat_memory.add_user_message(query)
ss.memory.chat_memory.add_ai_message(response)
ss.dialogue[-1] = (ss.dialogue[-1][0], response)
return ss
def qa_predict(ss: SessionState, query) -> SessionState:
original_query = query
# Rinnaモデル向けの設定(クエリの改行コード修正)
if ss.current_model == "rinna/bilingual-gpt-neox-4b-instruction-sft":
query = query.strip().replace("\n", "<NL>")
else:
query = query.strip()
# multilingual-e5向けのクエリ文言prefix
if ss.current_embedding == "intfloat/multilingual-e5-large":
db_query_str = "query: " + query
else:
db_query_str = query
# DBから関連文書と出典を抽出
docs = ss.db.similarity_search(db_query_str, k=ss.similarity_search_k)
sources= "\n\n[Sources]\n" + '\n - '.join(list(set(doc.metadata['source'] for doc in docs if 'source' in doc.metadata)))
# Rinnaモデル向けの設定(抽出文書の改行コード修正)
if ss.current_model == "rinna/bilingual-gpt-neox-4b-instruction-sft":
for i in range(len(docs)):
docs[i].page_content = docs[i].page_content.strip().replace("\n", "<NL>")
# 回答の生成(最大3回の試行)
for _ in range(3):
result = ss.qa_chain({"input_documents": docs, "query": query})
result["output_text"] = result["output_text"].replace("<NL>", "\n").strip("...").strip("回答:").strip()
# result["output_text"]が空欄でない場合、メモリーを更新して返す
if result["output_text"] != "":
response = result["output_text"] + sources
ss.dialogue[-1] = (ss.dialogue[-1][0], response)
ss.memory.chat_memory.add_user_message(original_query)
ss.memory.chat_memory.add_ai_message(response)
return ss
# else:
# 空欄の場合は直近の履歴を削除してやり直し
# ss.memory.chat_memory.messages = ss.memory.chat_memory.messages[:-2]
# 3回の試行後も空欄の場合
response = "3回試行しましたが、情報製生成できませんでした。"
if sources != "":
response += "参考文献の抽出には成功していますので、言語モデルを変えてお試しください。"
# ユーザーメッセージと AI メッセージの追加
ss.memory.chat_memory.add_user_message(original_query.replace("<NL>", "\n"))
ss.memory.chat_memory.add_ai_message(response)
ss.dialogue[-1] = (ss.dialogue[-1][0], response) # 会話履歴
return ss
# 回答を1文字ずつチャット画面に表示する
def show_response(ss: SessionState) -> str:
chat_history = [list(item) for item in ss.dialogue] # タプルをリストに変換して、メモリから会話履歴を取得
if chat_history:
response = chat_history[-1][1] # メモリから最新の会話[-1]を取得し、チャットボットの回答[1]を退避
chat_history[-1][1] = "" # 逐次表示のため、チャットボットの回答[1]を空にする
if response is None:
response = "回答を生成できませんでした。"
for character in response:
chat_history[-1][1] += character
time.sleep(0.05)
yield chat_history
with gr.Blocks() as demo:
# ユーザ別セッションメモリのインスタンス化(リロードでリセット)
ss = gr.State(SessionState())
# --------------------------------------
# API KEY をセット/クリアする関数
# --------------------------------------
def openai_api_setfn(openai_api_key) -> str:
if openai_api_key == "kikagaku":
os.environ["OPENAI_API_KEY"] = os.getenv("kikagaku_demo")
status_message = "✅ キカガク専用DEMOへようこそ!APIキーを設定しました"
return status_message
elif not openai_api_key or not openai_api_key.startswith("sk-") or len(openai_api_key) < 50:
os.environ["OPENAI_API_KEY"] = ""
status_message = "❌ 有効なAPIキーを入力してください"
return status_message
else:
os.environ["OPENAI_API_KEY"] = openai_api_key
status_message = "✅ APIキーを設定しました"
return status_message
def openai_api_clsfn(ss) -> (str, str):
openai_api_key = ""
os.environ["OPENAI_API_KEY"] = ""
status_message = "✅ APIキーの削除が完了しました"
return status_message, ""
with gr.Tabs():
# --------------------------------------
# Setting Tab
# --------------------------------------
with gr.TabItem("1. LLM設定"):
with gr.Row():
model_id = gr.Dropdown(
choices=[
'elyza/ELYZA-japanese-Llama-2-7b-fast-instruct',
'rinna/bilingual-gpt-neox-4b-instruction-sft',
'gpt-3.5-turbo',
],
value="gpt-3.5-turbo",
label='LLM model',
interactive=True,
)
with gr.Row():
embedding_id = gr.Dropdown(
choices=[
'intfloat/multilingual-e5-large',
'sonoisa/sentence-bert-base-ja-mean-tokens-v2',
'oshizo/sbert-jsnli-luke-japanese-base-lite',
'text-embedding-ada-002',
"None"
],
value="text-embedding-ada-002",
label = 'Embedding model',
interactive=True,
)
with gr.Row():
with gr.Column(scale=19):
openai_api_key = gr.Textbox(label="OpenAI API Key (Optional)", interactive=True, type="password", value="", placeholder="Your OpenAI API Key for OpenAI models.", max_lines=1)
with gr.Column(scale=1):
openai_api_set = gr.Button(value="Set API KEY", size="sm")
openai_api_cls = gr.Button(value="Delete API KEY", size="sm")
# with gr.Row():
# reference_libs = gr.CheckboxGroup(choices=['LangChain', 'Gradio'], label="Reference Libraries", interactive=False)
# 詳細設定(折りたたみ)
with gr.Accordion(label="Advanced Setting", open=False):
with gr.Row():
with gr.Column():
load_in_8bit = gr.Checkbox(label="8bit Quantize (HF)", value=True, interactive=True)
verbose = gr.Checkbox(label="Verbose (OpenAI, HF)", value=True, interactive=True)
with gr.Column():
temperature = gr.Slider(label='Temperature (OpenAI, HF)', minimum=0.0, maximum=1.0, step=0.1, value=0.2, interactive=True)
with gr.Column():
similarity_search_k = gr.Slider(label="similarity_search_k (OpenAI, HF)", minimum=1, maximum=10, step=1, value=3, interactive=True)
with gr.Column():
summarization_mode = gr.Radio(choices=['stuff', 'map_reduce'], label="Summarization mode", value='stuff', interactive=True)
with gr.Column():
min_length = gr.Slider(label="min_length (HF)", minimum=1, maximum=100, step=1, value=10, interactive=True)
with gr.Column():
max_new_tokens = gr.Slider(label="max_tokens(OpenAI), max_new_tokens(HF)", minimum=1, maximum=1024, step=1, value=256, interactive=True)
with gr.Column():
top_k = gr.Slider(label='top_k (HF)', minimum=1, maximum=100, step=1, value=40, interactive=True)
with gr.Column():
top_p = gr.Slider(label='top_p (HF)', minimum=0.01, maximum=0.99, step=0.01, value=0.92, interactive=True)
with gr.Column():
repetition_penalty = gr.Slider(label='repetition_penalty (HF)', minimum=0.5, maximum=2, step=0.1, value=1.2, interactive=True)
with gr.Column():
num_return_sequences = gr.Slider(label='num_return_sequences (HF)', minimum=1, maximum=20, step=1, value=3, interactive=True)
with gr.Row():
with gr.Column(scale=2):
config_btn = gr.Button(value="Configure")
with gr.Column(scale=13):
status_cfg = gr.Textbox(show_label=False, interactive=False, value="モデルを設定してください", container=False, max_lines=1)
# ボタン等のアクション設定
openai_api_set.click(openai_api_setfn, inputs=[openai_api_key], outputs=[status_cfg], show_progress="full")
openai_api_cls.click(openai_api_clsfn, inputs=[openai_api_key], outputs=[status_cfg, openai_api_key], show_progress="full")
openai_api_key.submit(openai_api_setfn, inputs=[openai_api_key], outputs=[status_cfg], show_progress="full")
config_btn.click(
fn = load_models,
inputs = [ss, model_id, embedding_id, openai_api_key, load_in_8bit, verbose, temperature, \
similarity_search_k, summarization_mode, \
min_length, max_new_tokens, top_k, top_p, repetition_penalty, num_return_sequences],
outputs = [ss, status_cfg],
queue = True,
show_progress = "full"
)
# --------------------------------------
# Reference Tab
# --------------------------------------
with gr.TabItem("2. References"):
urls = gr.TextArea(
max_lines = 60,
show_label=False,
info = "List any reference URLs for Q&A retrieval.",
placeholder = "https://blog.kikagaku.co.jp/deep-learning-transformer\nhttps://note.com/elyza/n/na405acaca130",
interactive=True,
)
with gr.Row():
pdf_paths = gr.File(label="PDFs", height=150, min_width=60, scale=7, file_types=[".pdf"], file_count="multiple", interactive=True)
header_lim = gr.Number(label="Header (pt)", step=1, value=792, precision=0, min_width=70, scale=1, interactive=True)
footer_lim = gr.Number(label="Footer (pt)", step=1, value=0, precision=0, min_width=70, scale=1, interactive=True)
pdf_ref = gr.Textbox(show_label=False, value="A4 Size:\n(下)0-792pt(上)\n *28.35pt/cm", container=False, scale=1, interactive=False)
with gr.Row():
ref_set_btn = gr.Button(value="コンテンツ登録", scale=1)
ref_clear_btn = gr.Button(value="登録データ削除", scale=1)
status_ref = gr.Textbox(show_label=False, interactive=False, value="参照データ未登録", container=False, max_lines=1, scale=18)
ref_set_btn.click(fn=embed_ref, inputs=[ss, urls, pdf_paths, header_lim, footer_lim], outputs=[ss, status_ref], queue=True, show_progress="full")
ref_clear_btn.click(fn=clear_db, inputs=[ss], outputs=[ss, status_ref], show_progress="full")
# --------------------------------------
# Chatbot Tab
# --------------------------------------
with gr.TabItem("3. Q&A Chat"):
chat_history = gr.Chatbot([], elem_id="chatbot", avatar_images=["bear.png", "penguin.png"],)
with gr.Row():
with gr.Column(scale=95):
query = gr.Textbox(
show_label=False,
placeholder="Send a message with [Shift]+[Enter] key.",
lines=4,
container=False,
autofocus=True,
interactive=True,
)
with gr.Column(scale=5):
with gr.Row():
qa_flag = gr.Checkbox(label="QA mode", value=False, min_width=60, interactive=True)
web_flag = gr.Checkbox(label="Web Search", value=True, min_width=60, interactive=True)
with gr.Row():
query_send_btn = gr.Button(value="▶")
# gr.Examples(["機械学習について説明してください"], inputs=[query])
query.submit(
user, [ss, query], [ss, chat_history]
).then(
bot, [ss, query, qa_flag, web_flag, summarization_mode], [ss, query]
).then(
show_response, [ss], [chat_history]
)
query_send_btn.click(
user, [ss, query], [ss, chat_history]
).then(
bot, [ss, query, qa_flag, web_flag, summarization_mode], [ss, query]
).then(
show_response, [ss], [chat_history]
)
if __name__ == "__main__":
demo.queue(concurrency_count=5)
demo.launch(debug=True)