import gradio as gr from transformers import Wav2Vec2ForCTC, AutoProcessor import torch import librosa model_id = "facebook/mms-1b-all" processor = AutoProcessor.from_pretrained(model_id) model = Wav2Vec2ForCTC.from_pretrained(model_id) def transcribe(audio_file_mic=None, audio_file_upload=None, language="eng"): if audio_file_mic: audio_file = audio_file_mic elif audio_file_upload: audio_file = audio_file_upload else: return "Please upload an audio file or record one" # Make sure audio is 16kHz mono WAV speech, sample_rate = librosa.load(audio_file) if sample_rate != 16000: speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000) # Keep the same model in memory and simply switch out the language adapters by calling load_adapter() for the model and set_target_lang() for the tokenizer processor.tokenizer.set_target_lang(language) model.load_adapter(language) inputs = processor(speech, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) return transcription languages = list(processor.tokenizer.vocab.keys()) examples = [["kab_1.mp3", None, "kab"], ["kab_2.mp3", None, "kab"]] description = '''Automatic Speech Recognition with [MMS](https://ai.facebook.com/blog/multilingual-model-speech-recognition/) (Massively Multilingual Speech) by Meta. Supports [1162 languages](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html). Read the paper for more details: [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516).''' iface = gr.Interface(fn=transcribe, inputs=[ gr.Audio(source="microphone", type="filepath"), gr.Audio(source="upload", type="filepath"), gr.Dropdown(choices=languages, label="Language", value="eng") ], outputs=["textbox"], examples=examples, description=description ) iface.launch()