Spaces:
Paused
Paused
File size: 31,878 Bytes
c732904 e411cc4 c732904 c485822 c732904 cfe989a c732904 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
import functools
import os
import shutil
import zipfile
from io import BytesIO
import spaces
import gradio as gr
import imageio as imageio
import numpy as np
import torch as torch
from PIL import Image
from diffusers import UNet2DConditionModel, LCMScheduler
from gradio_imageslider import ImageSlider
from huggingface_hub import login
from tqdm import tqdm
from extrude import extrude_depth_3d
from marigold_depth_estimation_lcm import MarigoldDepthConsistencyPipeline
default_seed = 2024
default_image_denoise_steps = 4
default_image_ensemble_size = 1
default_image_processing_res = 768
default_image_reproducuble = True
default_video_depth_latent_init_strength = 0.1
default_video_denoise_steps = 1
default_video_ensemble_size = 1
default_video_processing_res = 768
default_video_out_fps = 15
default_video_out_max_frames = 100
default_bas_plane_near = 0.0
default_bas_plane_far = 1.0
default_bas_embossing = 20
default_bas_denoise_steps = 4
default_bas_ensemble_size = 1
default_bas_processing_res = 768
default_bas_size_longest_px = 512
default_bas_size_longest_cm = 10
default_bas_filter_size = 3
default_bas_frame_thickness = 5
default_bas_frame_near = 1
default_bas_frame_far = 1
def process_image(
pipe,
path_input,
denoise_steps=default_image_denoise_steps,
ensemble_size=default_image_ensemble_size,
processing_res=default_image_processing_res,
reproducible=default_image_reproducuble,
):
input_image = Image.open(path_input)
pipe_out = pipe(
input_image,
denoising_steps=denoise_steps,
ensemble_size=ensemble_size,
processing_res=processing_res,
batch_size=1 if processing_res == 0 else 0,
seed=default_seed if reproducible else None,
show_progress_bar=False,
)
depth_pred = pipe_out.depth_np
depth_colored = pipe_out.depth_colored
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
path_output_dir = os.path.splitext(path_input)[0] + "_output"
os.makedirs(path_output_dir, exist_ok=True)
name_base = os.path.splitext(os.path.basename(path_input))[0]
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
np.save(path_out_fp32, depth_pred)
Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
depth_colored.save(path_out_vis)
return (
[path_out_16bit, path_out_vis],
[path_out_16bit, path_out_fp32, path_out_vis],
)
def process_video(
pipe,
path_input,
depth_latent_init_strength=default_video_depth_latent_init_strength,
denoise_steps=default_video_denoise_steps,
ensemble_size=default_video_ensemble_size,
processing_res=default_video_processing_res,
out_fps=default_video_out_fps,
out_max_frames=default_video_out_max_frames,
progress=gr.Progress(),
):
path_output_dir = os.path.splitext(path_input)[0] + "_output"
os.makedirs(path_output_dir, exist_ok=True)
name_base = os.path.splitext(os.path.basename(path_input))[0]
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip")
reader = imageio.get_reader(path_input)
meta_data = reader.get_meta_data()
fps = meta_data["fps"]
size = meta_data["size"]
duration_sec = meta_data["duration"]
if fps <= out_fps:
frame_interval, out_fps = 1, fps
else:
frame_interval = round(fps / out_fps)
out_fps = fps / frame_interval
out_duration_sec = out_max_frames / out_fps
if duration_sec > out_duration_sec:
gr.Warning(
f"Only the first ~{int(out_duration_sec)} seconds will be processed; "
f"use alternative setups for full processing"
)
writer = imageio.get_writer(path_out_vis, fps=out_fps)
zipf = zipfile.ZipFile(path_out_16bit, "w", zipfile.ZIP_DEFLATED)
prev_depth_latent = None
pbar = tqdm(desc="Processing Video", total=out_max_frames)
out_frame_id = 0
for frame_id, frame in enumerate(reader):
if not (frame_id % frame_interval == 0):
continue
out_frame_id += 1
pbar.update(1)
if out_frame_id > out_max_frames:
break
frame_pil = Image.fromarray(frame)
pipe_out = pipe(
frame_pil,
denoising_steps=denoise_steps,
ensemble_size=ensemble_size,
processing_res=processing_res,
match_input_res=False,
batch_size=0,
depth_latent_init=prev_depth_latent,
depth_latent_init_strength=depth_latent_init_strength,
seed=default_seed,
show_progress_bar=False,
)
prev_depth_latent = pipe_out.depth_latent
processed_frame = pipe_out.depth_colored
processed_frame = imageio.core.util.Array(np.array(processed_frame))
writer.append_data(processed_frame)
processed_frame = (65535 * np.clip(pipe_out.depth_np, 0.0, 1.0)).astype(
np.uint16
)
processed_frame = Image.fromarray(processed_frame, mode="I;16")
archive_path = os.path.join(
f"{name_base}_depth_16bit", f"{out_frame_id:05d}.png"
)
img_byte_arr = BytesIO()
processed_frame.save(img_byte_arr, format="png")
img_byte_arr.seek(0)
zipf.writestr(archive_path, img_byte_arr.read())
reader.close()
writer.close()
zipf.close()
return (
path_out_vis,
[path_out_vis, path_out_16bit],
)
def process_bas(
pipe,
path_input,
plane_near=default_bas_plane_near,
plane_far=default_bas_plane_far,
embossing=default_bas_embossing,
denoise_steps=default_bas_denoise_steps,
ensemble_size=default_bas_ensemble_size,
processing_res=default_bas_processing_res,
size_longest_px=default_bas_size_longest_px,
size_longest_cm=default_bas_size_longest_cm,
filter_size=default_bas_filter_size,
frame_thickness=default_bas_frame_thickness,
frame_near=default_bas_frame_near,
frame_far=default_bas_frame_far,
):
if plane_near >= plane_far:
raise gr.Error("NEAR plane must have a value smaller than the FAR plane")
path_output_dir = os.path.splitext(path_input)[0] + "_output"
os.makedirs(path_output_dir, exist_ok=True)
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
input_image = Image.open(path_input)
pipe_out = pipe(
input_image,
denoising_steps=denoise_steps,
ensemble_size=ensemble_size,
processing_res=processing_res,
seed=default_seed,
show_progress_bar=False,
)
depth_pred = pipe_out.depth_np * 65535
def _process_3d(
size_longest_px,
filter_size,
vertex_colors,
scene_lights,
output_model_scale=None,
prepare_for_3d_printing=False,
):
image_rgb_w, image_rgb_h = input_image.width, input_image.height
image_rgb_d = max(image_rgb_w, image_rgb_h)
image_new_w = size_longest_px * image_rgb_w // image_rgb_d
image_new_h = size_longest_px * image_rgb_h // image_rgb_d
image_rgb_new = os.path.join(
path_output_dir, f"{name_base}_rgb_{size_longest_px}{name_ext}"
)
image_depth_new = os.path.join(
path_output_dir, f"{name_base}_depth_{size_longest_px}.png"
)
input_image.resize((image_new_w, image_new_h), Image.LANCZOS).save(
image_rgb_new
)
Image.fromarray(depth_pred).convert(mode="F").resize(
(image_new_w, image_new_h), Image.BILINEAR
).convert("I").save(image_depth_new)
path_glb, path_stl = extrude_depth_3d(
image_rgb_new,
image_depth_new,
output_model_scale=size_longest_cm * 10
if output_model_scale is None
else output_model_scale,
filter_size=filter_size,
coef_near=plane_near,
coef_far=plane_far,
emboss=embossing / 100,
f_thic=frame_thickness / 100,
f_near=frame_near / 100,
f_back=frame_far / 100,
vertex_colors=vertex_colors,
scene_lights=scene_lights,
prepare_for_3d_printing=prepare_for_3d_printing,
)
return path_glb, path_stl
path_viewer_glb, _ = _process_3d(
256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1
)
path_files_glb, path_files_stl = _process_3d(
size_longest_px, filter_size, vertex_colors=True, scene_lights=False, prepare_for_3d_printing=True
)
return path_viewer_glb, [path_files_glb, path_files_stl]
def run_demo_server(pipe):
process_pipe_image = spaces.GPU(lambda *args, **kwargs: process_image(pipe, *args, **kwargs))
process_pipe_video = spaces.GPU(lambda *args, **kwargs: process_video(pipe, *args, **kwargs))
process_pipe_bas = spaces.GPU(lambda *args, **kwargs: process_bas(pipe, *args, **kwargs))
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
gradio_theme = gr.themes.Default()
with gr.Blocks(
theme=gradio_theme,
title="Marigold-LCM Depth Estimation",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
.tabs button.selected {
font-size: 20px !important;
color: crimson !important;
}
""",
head="""
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-1FWSVCGZTG');
</script>
""",
) as demo:
gr.Markdown(
"""
<h1 align="center">Marigold-LCM Depth Estimation</h1>
<p align="center">
<a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
<p align="justify">
Marigold-LCM is the fast version of Marigold, the state-of-the-art depth estimator for images in the wild.
It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as <b>one step</b>.
We provide three functions in this demo: Image, Video, and Bas-relief 3D processing — <b>see the tabs below</b>.
Upload your content into the <b>left</b> side, or click any of the <b>examples</b> below.
Wait a second (for images and 3D) or a minute (for videos), and interact with the result in the <b>right</b> side.
To avoid queuing, fork the demo into your profile.
</p>
"""
)
with gr.Tabs(elem_classes=["tabs"]):
with gr.Tab("Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Row():
image_submit_btn = gr.Button(
value="Compute Depth", variant="primary"
)
image_reset_btn = gr.Button(value="Reset")
with gr.Accordion("Advanced options", open=False):
image_denoise_steps = gr.Slider(
label="Number of denoising steps",
minimum=1,
maximum=4,
step=1,
value=default_image_denoise_steps,
)
image_ensemble_size = gr.Slider(
label="Ensemble size",
minimum=1,
maximum=10,
step=1,
value=default_image_ensemble_size,
)
image_processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=default_image_processing_res,
)
with gr.Column():
image_output_slider = ImageSlider(
label="Predicted depth (red-near, blue-far)",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
image_output_files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
gr.Examples(
fn=process_pipe_image,
examples=[
os.path.join("files", "image", name)
for name in [
"arc.jpeg",
"berries.jpeg",
"butterfly.jpeg",
"cat.jpg",
"concert.jpeg",
"dog.jpeg",
"doughnuts.jpeg",
"einstein.jpg",
"food.jpeg",
"glasses.jpeg",
"house.jpg",
"lake.jpeg",
"marigold.jpeg",
"portrait_1.jpeg",
"portrait_2.jpeg",
"pumpkins.jpg",
"puzzle.jpeg",
"road.jpg",
"scientists.jpg",
"surfboards.jpeg",
"surfer.jpeg",
"swings.jpg",
"switzerland.jpeg",
"teamwork.jpeg",
"wave.jpeg",
]
],
inputs=[image_input],
outputs=[image_output_slider, image_output_files],
cache_examples=True,
)
with gr.Tab("Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(
label="Input Video",
sources=["upload"],
)
with gr.Row():
video_submit_btn = gr.Button(
value="Compute Depth", variant="primary"
)
video_reset_btn = gr.Button(value="Reset")
with gr.Column():
video_output_video = gr.Video(
label="Output video depth (red-near, blue-far)",
interactive=False,
)
video_output_files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
gr.Examples(
fn=process_pipe_video,
examples=[
os.path.join("files", "video", name)
for name in [
"cab.mp4",
"elephant.mp4",
"obama.mp4",
]
],
inputs=[video_input],
outputs=[video_output_video, video_output_files],
cache_examples=True,
)
with gr.Tab("Bas-relief (3D)"):
gr.Markdown(
"""
<p align="justify">
This part of the demo uses Marigold-LCM to create a bas-relief model.
The models are watertight, with correct normals, and exported in the STL format, which makes them <b>3D-printable</b>.
Start by uploading the image and click "Create" with the default parameters.
To improve the result, click "Clear", adjust the geometry sliders below, and click "Create" again.
</p>
""",
)
with gr.Row():
with gr.Column():
bas_input = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Row():
bas_submit_btn = gr.Button(value="Create 3D", variant="primary")
bas_clear_btn = gr.Button(value="Clear")
bas_reset_btn = gr.Button(value="Reset")
with gr.Accordion("3D printing demo: Main options", open=True):
bas_plane_near = gr.Slider(
label="Relative position of the near plane (between 0 and 1)",
minimum=0.0,
maximum=1.0,
step=0.001,
value=default_bas_plane_near,
)
bas_plane_far = gr.Slider(
label="Relative position of the far plane (between near and 1)",
minimum=0.0,
maximum=1.0,
step=0.001,
value=default_bas_plane_far,
)
bas_embossing = gr.Slider(
label="Embossing level",
minimum=0,
maximum=100,
step=1,
value=default_bas_embossing,
)
with gr.Accordion("3D printing demo: Advanced options", open=False):
bas_denoise_steps = gr.Slider(
label="Number of denoising steps",
minimum=1,
maximum=4,
step=1,
value=default_bas_denoise_steps,
)
bas_ensemble_size = gr.Slider(
label="Ensemble size",
minimum=1,
maximum=10,
step=1,
value=default_bas_ensemble_size,
)
bas_processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=default_bas_processing_res,
)
bas_size_longest_px = gr.Slider(
label="Size (px) of the longest side",
minimum=256,
maximum=1024,
step=256,
value=default_bas_size_longest_px,
)
bas_size_longest_cm = gr.Slider(
label="Size (cm) of the longest side",
minimum=1,
maximum=100,
step=1,
value=default_bas_size_longest_cm,
)
bas_filter_size = gr.Slider(
label="Size (px) of the smoothing filter",
minimum=1,
maximum=5,
step=2,
value=default_bas_filter_size,
)
bas_frame_thickness = gr.Slider(
label="Frame thickness",
minimum=0,
maximum=100,
step=1,
value=default_bas_frame_thickness,
)
bas_frame_near = gr.Slider(
label="Frame's near plane offset",
minimum=-100,
maximum=100,
step=1,
value=default_bas_frame_near,
)
bas_frame_far = gr.Slider(
label="Frame's far plane offset",
minimum=1,
maximum=10,
step=1,
value=default_bas_frame_far,
)
with gr.Column():
bas_output_viewer = gr.Model3D(
camera_position=(75.0, 90.0, 1.25),
elem_classes="viewport",
label="3D preview (low-res, relief highlight)",
interactive=False,
)
bas_output_files = gr.Files(
label="3D model outputs (high-res)",
elem_id="download",
interactive=False,
)
gr.Examples(
fn=process_pipe_bas,
examples=[
[
"files/basrelief/coin.jpg", # input
0.0, # plane_near
0.66, # plane_far
15, # embossing
4, # denoise_steps
4, # ensemble_size
768, # processing_res
512, # size_longest_px
10, # size_longest_cm
3, # filter_size
5, # frame_thickness
0, # frame_near
1, # frame_far
],
[
"files/basrelief/einstein.jpg", # input
0.0, # plane_near
0.5, # plane_far
50, # embossing
2, # denoise_steps
1, # ensemble_size
768, # processing_res
512, # size_longest_px
10, # size_longest_cm
3, # filter_size
5, # frame_thickness
-15, # frame_near
1, # frame_far
],
[
"files/basrelief/food.jpeg", # input
0.0, # plane_near
1.0, # plane_far
20, # embossing
2, # denoise_steps
4, # ensemble_size
768, # processing_res
512, # size_longest_px
10, # size_longest_cm
3, # filter_size
5, # frame_thickness
-5, # frame_near
1, # frame_far
],
],
inputs=[
bas_input,
bas_plane_near,
bas_plane_far,
bas_embossing,
bas_denoise_steps,
bas_ensemble_size,
bas_processing_res,
bas_size_longest_px,
bas_size_longest_cm,
bas_filter_size,
bas_frame_thickness,
bas_frame_near,
bas_frame_far,
],
outputs=[bas_output_viewer, bas_output_files],
cache_examples=True,
)
image_submit_btn.click(
fn=process_pipe_image,
inputs=[
image_input,
image_denoise_steps,
image_ensemble_size,
image_processing_res,
],
outputs=[image_output_slider, image_output_files],
concurrency_limit=1,
)
image_reset_btn.click(
fn=lambda: (
None,
None,
None,
default_image_ensemble_size,
default_image_denoise_steps,
default_image_processing_res,
),
inputs=[],
outputs=[
image_input,
image_output_slider,
image_output_files,
image_ensemble_size,
image_denoise_steps,
image_processing_res,
],
concurrency_limit=1,
)
video_submit_btn.click(
fn=process_pipe_video,
inputs=[video_input],
outputs=[video_output_video, video_output_files],
concurrency_limit=1,
)
video_reset_btn.click(
fn=lambda: (None, None, None),
inputs=[],
outputs=[video_input, video_output_video, video_output_files],
concurrency_limit=1,
)
def wrapper_process_pipe_bas(*args, **kwargs):
out = list(process_pipe_bas(*args, **kwargs))
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
return out
bas_submit_btn.click(
fn=wrapper_process_pipe_bas,
inputs=[
bas_input,
bas_plane_near,
bas_plane_far,
bas_embossing,
bas_denoise_steps,
bas_ensemble_size,
bas_processing_res,
bas_size_longest_px,
bas_size_longest_cm,
bas_filter_size,
bas_frame_thickness,
bas_frame_near,
bas_frame_far,
],
outputs=[bas_submit_btn, bas_input, bas_output_viewer, bas_output_files],
concurrency_limit=1,
)
bas_clear_btn.click(
fn=lambda: (gr.Button(interactive=True), None, None),
inputs=[],
outputs=[
bas_submit_btn,
bas_output_viewer,
bas_output_files,
],
concurrency_limit=1,
)
bas_reset_btn.click(
fn=lambda: (
gr.Button(interactive=True),
None,
None,
None,
default_bas_plane_near,
default_bas_plane_far,
default_bas_embossing,
default_bas_denoise_steps,
default_bas_ensemble_size,
default_bas_processing_res,
default_bas_size_longest_px,
default_bas_size_longest_cm,
default_bas_filter_size,
default_bas_frame_thickness,
default_bas_frame_near,
default_bas_frame_far,
),
inputs=[],
outputs=[
bas_submit_btn,
bas_input,
bas_output_viewer,
bas_output_files,
bas_plane_near,
bas_plane_far,
bas_embossing,
bas_denoise_steps,
bas_ensemble_size,
bas_processing_res,
bas_size_longest_px,
bas_size_longest_cm,
bas_filter_size,
bas_frame_thickness,
bas_frame_near,
bas_frame_far,
],
concurrency_limit=1,
)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
def prefetch_hf_cache(pipe):
process_image(pipe, "files/image/bee.jpg", 1, 1, 64)
shutil.rmtree("files/image/bee_output")
def main():
CHECKPOINT = "prs-eth/marigold-v1-0"
CHECKPOINT_UNET_LCM = "prs-eth/marigold-lcm-v1-0"
if "HF_TOKEN_LOGIN" in os.environ:
login(token=os.environ["HF_TOKEN_LOGIN"])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = MarigoldDepthConsistencyPipeline.from_pretrained(
CHECKPOINT,
unet=UNet2DConditionModel.from_pretrained(
CHECKPOINT_UNET_LCM, subfolder="unet", use_auth_token=True
),
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to(device)
prefetch_hf_cache(pipe)
run_demo_server(pipe)
if __name__ == "__main__":
main()
|