Spaces:
Paused
Paused
File size: 4,316 Bytes
52cef88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
from typing import List
from omni_zero import OmniZeroCouple
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.omni_zero = OmniZeroCouple(
base_model="frankjoshua/albedobaseXL_v13",
)
def predict(
self,
seed: int = Input(description="Random seed for the model", default=42),
prompt: str = Input(description="Prompt for the model", default="Cinematic still photo of a couple. emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo, sharp focus, high budget, cinemascope, moody, epic, gorgeous, film grain, grainy"),
negative_prompt: str = Input(description="Negative prompt for the model", default="anime, cartoon, graphic, (blur, blurry, bokeh), text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"),
guidance_scale: float = Input(description="Guidance scale for the model", default=3.0, ge=0.0, le=14.0),
number_of_images: int = Input(description="Number of images to generate", default=1, ge=1, le=4),
number_of_steps: int = Input(description="Number of steps for the model", default=10, ge=1, le=50),
base_image: Path = Input(description="Base image for the model", default=None),
base_image_strength: float = Input(description="Base image strength for the model", default=0.3, ge=0.0, le=1.0),
style_image: Path = Input(description="Style image for the model", default=None),
style_image_strength: float = Input(description="Style image strength for the model", default=1.0, ge=0.0, le=1.0),
identity_image_1: Path = Input(description="First identity image for the model", default=None),
identity_image_strength_1: float = Input(description="First identity image strength for the model", default=1.0, ge=0.0, le=1.0),
identity_image_2: Path = Input(description="Second identity image for the model", default=None),
identity_image_strength_2: float = Input(description="Second identity image strength for the model", default=1.0, ge=0.0, le=1.0),
depth_image: Path = Input(description="Depth image for the model", default=None),
depth_image_strength: float = Input(description="Depth image strength for the model", default=0.2, ge=0.0, le=1.0),
mask_guidance_start: float = Input(description="Mask guidance start value", default=0.0, ge=0.0, le=1.0),
mask_guidance_end: float = Input(description="Mask guidance end value", default=1.0, ge=0.0, le=1.0),
) -> List[Path]:
"""Run a single prediction on the model"""
# base_image = Image.open(base_image) if base_image else None
# style_image = Image.open(style_image) if style_image else None
# identity_image_1 = Image.open(identity_image_1) if identity_image_1 else None
# identity_image_2 = Image.open(identity_image_2) if identity_image_2 else None
# depth_image = Image.open(depth_image) if depth_image else None
images = self.omni_zero.generate(
seed=seed,
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
number_of_images=number_of_images,
number_of_steps=number_of_steps,
base_image=base_image,
base_image_strength=base_image_strength,
style_image=style_image,
style_image_strength=style_image_strength,
identity_image_1=identity_image_1,
identity_image_strength_1=identity_image_strength_1,
identity_image_2=identity_image_2,
identity_image_strength_2=identity_image_strength_2,
depth_image=depth_image,
depth_image_strength=depth_image_strength,
mask_guidance_start=mask_guidance_start,
mask_guidance_end=mask_guidance_end,
)
outputs = []
for i, image in enumerate(images):
output_path = f"oz_output_{i}.jpg"
image.save(output_path)
outputs.append(Path(output_path))
return outputs |