Spaces:
Runtime error
Runtime error
File size: 17,776 Bytes
e775f6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import numpy as np
from music21 import *
from music21.features import native, jSymbolic, DataSet
import pretty_midi as pm
from src.music.utils import get_out_path
from src.music.utilities.handcoded_rep_utilities.tht import tactus_hypothesis_tracker, tracker_analysis
from src.music.utilities.handcoded_rep_utilities.loudness import get_loudness, compute_total_loudness, amplitude2db, velocity2amplitude, get_db_of_equivalent_loudness_at_440hz, pitch2freq
import json
import os
environment.set('musicxmlPath', '/home/cedric/Desktop/test/')
midi_path = "/home/cedric/Documents/pianocktail/data/music/processed/doug_mckenzie_processed/allthethings_reharmonized_processed.mid"
FEATURES_DICT_SCORE = dict(
# strongest pulse: measures how fast the melody is
# stronger_pulse=jSymbolic.StrongestRhythmicPulseFeature,
# weights of the two strongest pulse, measures rhythmic consistency: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#combinedstrengthoftwostrongestrhythmicpulsesfeature
pulse_strength_two=jSymbolic.CombinedStrengthOfTwoStrongestRhythmicPulsesFeature,
# weights of the strongest pulse, measures rhythmic consistency: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#combinedstrengthoftwostrongestrhythmicpulsesfeature
pulse_strength = jSymbolic.StrengthOfStrongestRhythmicPulseFeature,
# variability of attacks: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#variabilityoftimebetweenattacksfeature
)
FEATURES_DICT = dict(
# bass register importance: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#importanceofbassregisterfeature
# bass_register=jSymbolic.ImportanceOfBassRegisterFeature,
# high register importance: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#importanceofbassregisterfeature
# high_register=jSymbolic.ImportanceOfHighRegisterFeature,
# medium register importance: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#importanceofbassregisterfeature
# medium_register=jSymbolic.ImportanceOfMiddleRegisterFeature,
# number of common pitches (at least 9% of all): https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#numberofcommonmelodicintervalsfeature
# common_pitches=jSymbolic.NumberOfCommonPitchesFeature,
# pitch class variety (used at least once): https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#pitchvarietyfeature
# pitch_variety=jSymbolic.PitchVarietyFeature,
# attack_variability = jSymbolic.VariabilityOfTimeBetweenAttacksFeature,
# staccato fraction: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#staccatoincidencefeature
# staccato_score = jSymbolic.StaccatoIncidenceFeature,
# mode analysis: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesNative.html
av_melodic_interval = jSymbolic.AverageMelodicIntervalFeature,
# chromatic motion: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#chromaticmotionfeature
chromatic_motion = jSymbolic.ChromaticMotionFeature,
# direction of motion (fraction of rising intervals: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#directionofmotionfeature
motion_direction = jSymbolic.DirectionOfMotionFeature,
# duration of melodic arcs: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#durationofmelodicarcsfeature
melodic_arcs_duration = jSymbolic.DurationOfMelodicArcsFeature,
# melodic arcs size: https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#sizeofmelodicarcsfeature
melodic_arcs_size = jSymbolic.SizeOfMelodicArcsFeature,
# number of common melodic interval (at least 9% of all): https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#numberofcommonmelodicintervalsfeature
# common_melodic_intervals = jSymbolic.NumberOfCommonMelodicIntervalsFeature,
# https://web.mit.edu/music21/doc/moduleReference/moduleFeaturesJSymbolic.html#amountofarpeggiationfeature
# arpeggiato=jSymbolic.AmountOfArpeggiationFeature,
)
def compute_beat_info(onsets):
onsets_in_ms = np.array(onsets) * 1000
tht = tactus_hypothesis_tracker.default_tht()
trackers = tht(onsets_in_ms)
top_hts = tracker_analysis.top_hypothesis(trackers, len(onsets_in_ms))
beats = tracker_analysis.produce_beats_information(onsets_in_ms, top_hts, adapt_period=250 is not None,
adapt_phase=tht.eval_f, max_delta_bpm=250, avoid_quickturns=None)
tempo = 1 / (np.mean(np.diff(beats)) / 1000) * 60 # in bpm
conf_values = tracker_analysis.tht_tracking_confs(trackers, len(onsets_in_ms))
pulse_clarity = np.mean(np.array(conf_values), axis=0)[1]
return tempo, pulse_clarity
def dissonance_score(A):
"""
Given a piano-roll indicator matrix representation of a musical work (128 pitches x beats),
return the dissonance as a function of beats.
Input:
A - 128 x beats indicator matrix of MIDI pitch number
"""
freq_rats = np.arange(1, 7) # Harmonic series ratios
amps = np.exp(-.5 * freq_rats) # Partial amplitudes
F0 = 8.1757989156 # base frequency for MIDI (note 0)
diss = [] # List for dissonance values
thresh = 1e-3
for beat in A.T:
idx = np.where(beat>thresh)[0]
if len(idx):
freqs, mags = [], [] # lists for frequencies, mags
for i in idx:
freqs.extend(F0*2**(i/12.0)*freq_rats)
mags.extend(amps)
freqs = np.array(freqs)
mags = np.array(mags)
sortIdx = freqs.argsort()
d = compute_dissonance(freqs[sortIdx],mags[sortIdx])
diss.extend([d])
else:
diss.extend([-1]) # Null value
diss = np.array(diss)
return diss[np.where(diss != -1)]
def compute_dissonance(freqs, amps):
"""
From https://notebook.community/soundspotter/consonance/week1_consonance
Compute dissonance between partials with center frequencies in freqs, uses a model of critical bandwidth.
and amplitudes in amps. Based on Sethares "Tuning, Timbre, Spectrum, Scale" (1998) after Plomp and Levelt (1965)
inputs:
freqs - list of partial frequencies
amps - list of corresponding amplitudes [default, uniformly 1]
"""
b1, b2, s1, s2, c1, c2, Dstar = (-3.51, -5.75, 0.0207, 19.96, 5, -5, 0.24)
f = np.array(freqs)
a = np.array(amps)
idx = np.argsort(f)
f = f[idx]
a = a[idx]
N = f.size
D = 0
for i in range(1, N):
Fmin = f[ 0 : N - i ]
S = Dstar / ( s1 * Fmin + s2)
Fdif = f[ i : N ] - f[ 0 : N - i ]
am = a[ i : N ] * a[ 0 : N - i ]
Dnew = am * (c1 * np.exp (b1 * S * Fdif) + c2 * np.exp(b2 * S * Fdif))
D += Dnew.sum()
return D
def store_new_midi(notes, out_path):
midi = pm.PrettyMIDI()
midi.instruments.append(pm.Instrument(program=0, is_drum=False))
midi.instruments[0].notes = notes
midi.write(out_path)
return midi
def processed2handcodedrep(midi_path, handcoded_rep_path=None, crop=30, verbose=False, save=True, return_rep=False, level=0):
try:
if not handcoded_rep_path:
handcoded_rep_path, _, _ = get_out_path(in_path=midi_path, in_word='processed', out_word='handcoded_reps', out_extension='.mid')
features = dict()
if verbose: print(' ' * level + 'Computing handcoded representations')
if os.path.exists(handcoded_rep_path):
with open(handcoded_rep_path.replace('.mid', '.json'), 'r') as f:
features = json.load(f)
rep = np.array([features[k] for k in sorted(features.keys())])
if rep.size == 49:
os.remove(handcoded_rep_path)
else:
if verbose: print(' ' * (level + 2) + 'Already computed.')
if return_rep:
return handcoded_rep_path, np.array([features[k] for k in sorted(features.keys())]), ''
else:
return handcoded_rep_path, ''
midi = pm.PrettyMIDI(midi_path) # load midi with pretty midi
notes = midi.instruments[0].notes # get notes
notes.sort(key=lambda x: (x.start, x.pitch)) # sort notes per start and pitch
onsets, offsets, pitches, durations, velocities = [], [], [], [], []
n_notes_cropped = len(notes)
for i_n, n in enumerate(notes):
onsets.append(n.start)
offsets.append(n.end)
durations.append(n.end-n.start)
pitches.append(n.pitch)
velocities.append(n.velocity)
if crop is not None: # find how many notes to keep
if n.start > crop and n_notes_cropped == len(notes):
n_notes_cropped = i_n
break
notes = notes[:n_notes_cropped]
midi = store_new_midi(notes, handcoded_rep_path)
# pianoroll = midi.get_piano_roll() # extract piano roll representation
# compute loudness
amplitudes = velocity2amplitude(np.array(velocities))
power_dbs = amplitude2db(amplitudes)
frequencies = pitch2freq(np.array(pitches))
loudness_values = get_loudness(power_dbs, frequencies)
# compute average perceived loudness
# for each power, compute loudness, then compute power such that the loudness at 440 Hz would be equivalent.
# equivalent_powers_dbs = get_db_of_equivalent_loudness_at_440hz(frequencies, power_dbs)
# then get the corresponding amplitudes
# equivalent_amplitudes = 10 ** (equivalent_powers_dbs / 20)
# not use a amplitude model across the sample to compute the instantaneous amplitude, turn it back to dbs, then to perceived loudness with unique freq 440 Hz
# av_total_loudness, std_total_loudness = compute_total_loudness(equivalent_amplitudes, onsets, offsets)
end_time = np.max(offsets)
start_time = notes[0].start
score = converter.parse(handcoded_rep_path)
score.chordify()
notes_without_chords = stream.Stream(score.flatten().getElementsByClass('Note'))
velocities_wo_chords, pitches_wo_chords, amplitudes_wo_chords, dbs_wo_chords = [], [], [], []
frequencies_wo_chords, loudness_values_wo_chords, onsets_wo_chords, offsets_wo_chords, durations_wo_chords = [], [], [], [], []
for i_n in range(len(notes_without_chords)):
n = notes_without_chords[i_n]
velocities_wo_chords.append(n.volume.velocity)
pitches_wo_chords.append(n.pitch.midi)
onsets_wo_chords.append(n.offset)
offsets_wo_chords.append(onsets_wo_chords[-1] + n.seconds)
durations_wo_chords.append(n.seconds)
amplitudes_wo_chords = velocity2amplitude(np.array(velocities_wo_chords))
power_dbs_wo_chords = amplitude2db(amplitudes_wo_chords)
frequencies_wo_chords = pitch2freq(np.array(pitches_wo_chords))
loudness_values_wo_chords = get_loudness(power_dbs_wo_chords, frequencies_wo_chords)
# compute average perceived loudness
# for each power, compute loudness, then compute power such that the loudness at 440 Hz would be equivalent.
# equivalent_powers_dbs_wo_chords = get_db_of_equivalent_loudness_at_440hz(frequencies_wo_chords, power_dbs_wo_chords)
# then get the corresponding amplitudes
# equivalent_amplitudes_wo_chords = 10 ** (equivalent_powers_dbs_wo_chords / 20)
# not use a amplitude model across the sample to compute the instantaneous amplitude, turn it back to dbs, then to perceived loudness with unique freq 440 Hz
# av_total_loudness_wo_chords, std_total_loudness_wo_chords = compute_total_loudness(equivalent_amplitudes_wo_chords, onsets_wo_chords, offsets_wo_chords)
ds = DataSet(classLabel='test')
f = list(FEATURES_DICT.values())
ds.addFeatureExtractors(f)
ds.addData(notes_without_chords)
ds.process()
for k, f in zip(FEATURES_DICT.keys(), ds.getFeaturesAsList()[0][1:-1]):
features[k] = f
ds = DataSet(classLabel='test')
f = list(FEATURES_DICT_SCORE.values())
ds.addFeatureExtractors(f)
ds.addData(score)
ds.process()
for k, f in zip(FEATURES_DICT_SCORE.keys(), ds.getFeaturesAsList()[0][1:-1]):
features[k] = f
# # # # #
# Register features
# # # # #
# features['av_pitch'] = np.mean(pitches)
# features['std_pitch'] = np.std(pitches)
# features['range_pitch'] = np.max(pitches) - np.min(pitches) # aka ambitus
# # # # #
# Rhythmic features
# # # # #
# tempo, pulse_clarity = compute_beat_info(onsets[:n_notes_cropped])
# features['pulse_clarity'] = pulse_clarity
# features['tempo'] = tempo
features['tempo_pm'] = midi.estimate_tempo()
# # # # #
# Temporal features
# # # # #
features['av_duration'] = np.mean(durations)
# features['std_duration'] = np.std(durations)
features['note_density'] = len(notes) / (end_time - start_time)
# intervals_wo_chords = np.diff(onsets_wo_chords)
# articulations = [max((i-d)/i, 0) for d, i in zip(durations_wo_chords, intervals_wo_chords) if i != 0]
# features['articulation'] = np.mean(articulations)
# features['av_duration_wo_chords'] = np.mean(durations_wo_chords)
# features['std_duration_wo_chords'] = np.std(durations_wo_chords)
# # # # #
# Dynamics features
# # # # #
features['av_velocity'] = np.mean(velocities)
features['std_velocity'] = np.std(velocities)
features['av_loudness'] = np.mean(loudness_values)
# features['std_loudness'] = np.std(loudness_values)
features['range_loudness'] = np.max(loudness_values) - np.min(loudness_values)
# features['av_integrated_loudness'] = av_total_loudness
# features['std_integrated_loudness'] = std_total_loudness
# features['av_velocity_wo_chords'] = np.mean(velocities_wo_chords)
# features['std_velocity_wo_chords'] = np.std(velocities_wo_chords)
# features['av_loudness_wo_chords'] = np.mean(loudness_values_wo_chords)
# features['std_loudness_wo_chords'] = np.std(loudness_values_wo_chords)
features['range_loudness_wo_chords'] = np.max(loudness_values_wo_chords) - np.min(loudness_values_wo_chords)
# features['av_integrated_loudness'] = av_total_loudness_wo_chords
# features['std_integrated_loudness'] = std_total_loudness_wo_chords
# indices_with_intervals = np.where(intervals_wo_chords > 0.01)
# features['av_loudness_change'] = np.mean(np.abs(np.diff(np.array(loudness_values_wo_chords)[indices_with_intervals]))) # accentuation
# features['av_velocity_change'] = np.mean(np.abs(np.diff(np.array(velocities_wo_chords)[indices_with_intervals]))) # accentuation
# # # # #
# Harmony features
# # # # #
# get major_minor score: https://web.mit.edu/music21/doc/moduleReference/moduleAnalysisDiscrete.html
music_analysis = score.analyze('key')
major_score = None
minor_score = None
for a in [music_analysis] + music_analysis.alternateInterpretations:
if 'major' in a.__str__() and a.correlationCoefficient > 0:
major_score = a.correlationCoefficient
elif 'minor' in a.__str__() and a.correlationCoefficient > 0:
minor_score = a.correlationCoefficient
if major_score is not None and minor_score is not None:
break
features['major_minor'] = major_score / (major_score + minor_score)
features['tonal_certainty'] = music_analysis.tonalCertainty()
# features['av_sensory_dissonance'] = np.mean(dissonance_score(pianoroll))
#TODO only works for chords, do something with melodic intervals: like proportion that is not third, fifth or sevenths?
# # # # #
# Interval features
# # # # #
#https://web.mit.edu/music21/doc/moduleReference/moduleAnalysisPatel.html
# features['melodic_interval_variability'] = analysis.patel.melodicIntervalVariability(notes_without_chords)
# # # # #
# Suprize features
# # # # #
# https://web.mit.edu/music21/doc/moduleReference/moduleAnalysisMetrical.html
# analysis.metrical.thomassenMelodicAccent(notes_without_chords)
# melodic_accents = [n.melodicAccent for n in notes_without_chords]
# features['melodic_accent'] = np.mean(melodic_accents)
if save:
for k, v in features.items():
features[k] = float(features[k])
with open(handcoded_rep_path.replace('.mid', '.json'), 'w') as f:
json.dump(features, f)
else:
print(features)
if os.path.exists(handcoded_rep_path):
os.remove(handcoded_rep_path)
if verbose: print(' ' * (level + 2) + 'Success.')
if return_rep:
return handcoded_rep_path, np.array([features[k] for k in sorted(features.keys())]), ''
else:
return handcoded_rep_path, ''
except:
if verbose: print(' ' * (level + 2) + 'Failed.')
if return_rep:
return None, None, 'error'
else:
return None, 'error'
if __name__ == '__main__':
processed2handcodedrep(midi_path, '/home/cedric/Desktop/test.mid', save=False) |