File size: 19,441 Bytes
e775f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import pandas as pd
import numpy as np
import os
from src.cocktails.utilities.cocktail_utilities import get_bunch_of_rep_keys
from src.cocktails.utilities.other_scrubbing_utilities import print_recipe
from src.cocktails.config import COCKTAILS_CSV_DATA
from src.music.config import CHECKPOINTS_PATH, EXPERIMENT_PATH
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import NearestNeighbors
import pickle
import random

experiment_path = EXPERIMENT_PATH + '/cocktails/representation_analysis/affective_mapping/'
min_max_path = CHECKPOINTS_PATH + "/cocktail_representation/minmax/"
cluster_model_path = CHECKPOINTS_PATH + "/music2cocktails/affects2affect_cluster/cluster_model.pickle"
affective_space_dimensions = ((-1, 1), (-1, 1), (-1, 1))  # valence, arousal, dominance
n_splits = (3, 3, 2)  # number of bins per dimension
# dimensions_weights = [1, 1, 0.5]
dimensions_weights = [1, 1, 1]
total_n_clusters = np.prod(n_splits)  # total number of bins
affective_boundaries = [np.arange(asd[0], asd[1]+1e-6, (asd[1] - asd[0]) / n_split) for asd, n_split in zip(affective_space_dimensions, n_splits)]
for af in affective_boundaries:
    af[-1] += 1e-6
all_keys = get_bunch_of_rep_keys()['custom']
original_affective_keys = get_bunch_of_rep_keys()['affective']
affective_keys = [a.split(' ')[1] for a in original_affective_keys]
random.seed(0)
cluster_colors = ['#%06X' % random.randint(0, 0xFFFFFF) for _ in range(total_n_clusters)]

clustering_method = 'k_means'  # 'k_means', 'handcoded', 'agglo', 'spectral'
if clustering_method != 'handcoded':
    total_n_clusters = 10
min_arousal = np.loadtxt(min_max_path + 'min_arousal.txt')
max_arousal = np.loadtxt(min_max_path + 'max_arousal.txt')
min_val = np.loadtxt(min_max_path + 'min_valence.txt')
max_val = np.loadtxt(min_max_path + 'max_valence.txt')
min_dom = np.loadtxt(min_max_path + 'min_dominance.txt')
max_dom = np.loadtxt(min_max_path + 'max_dominance.txt')

def get_cocktail_reps(path, save=False):
    cocktail_data = pd.read_csv(path)
    cocktail_reps = np.array([cocktail_data[k] for k in original_affective_keys]).transpose()
    n_data, dim_rep = cocktail_reps.shape
    # print(f'{n_data} data points of {dim_rep} dimensions: {affective_keys}')
    cocktail_reps = normalize_cocktail_reps_affective(cocktail_reps, save=save)
    if save:
        np.savetxt(experiment_path + f'cocktail_reps_for_affective_mapping_-1_1_norm_sigmoid_rescaling_{dim_rep}_keys.txt', cocktail_reps)
    return cocktail_reps

def sigmoid(x, shift, beta):
    return (1 / (1 + np.exp(-(x + shift) * beta)) - 0.5) * 2

def normalize_cocktail_reps_affective(cocktail_reps, save=False):
    if save:
        min_cr = cocktail_reps.min(axis=0)
        max_cr = cocktail_reps.max(axis=0)
        np.savetxt(min_max_path + 'min_cocktail_reps_affective.txt', min_cr)
        np.savetxt(min_max_path + 'max_cocktail_reps_affective.txt', max_cr)
    else:
        min_cr = np.loadtxt(min_max_path + 'min_cocktail_reps_affective.txt')
        max_cr = np.loadtxt(min_max_path + 'max_cocktail_reps_affective.txt')
    cocktail_reps = ((cocktail_reps - min_cr) / (max_cr - min_cr) - 0.5) * 2
    cocktail_reps[:, 0] = sigmoid(cocktail_reps[:, 0], shift=0.05, beta=4)
    cocktail_reps[:, 1] = sigmoid(cocktail_reps[:, 1], shift=0.3, beta=5)
    cocktail_reps[:, 2] = sigmoid(cocktail_reps[:, 2], shift=0.15, beta=3)
    cocktail_reps[:, 3] = sigmoid(cocktail_reps[:, 3], shift=0.9, beta=20)
    cocktail_reps[:, 4] = sigmoid(cocktail_reps[:, 4], shift=0, beta=4)
    cocktail_reps[:, 5] = sigmoid(cocktail_reps[:, 5], shift=0.2, beta=3)
    cocktail_reps[:, 6] = sigmoid(cocktail_reps[:, 6], shift=0.5, beta=5)
    cocktail_reps[:, 7] = sigmoid(cocktail_reps[:, 7], shift=0.2, beta=6)
    return cocktail_reps

def plot(cocktail_reps):
    dim_rep = cocktail_reps.shape[1]
    for i in range(dim_rep):
        for j in range(i+1, dim_rep):
            plt.figure()
            plt.scatter(cocktail_reps[:, i], cocktail_reps[:, j], s=150, alpha=0.5)
            plt.xlabel(affective_keys[i])
            plt.ylabel(affective_keys[j])
            plt.savefig(experiment_path + f'scatters/{affective_keys[i]}_vs_{affective_keys[j]}.png', dpi=300)
            plt.close('all')
        plt.figure()
        plt.hist(cocktail_reps[:, i])
        plt.xlabel(affective_keys[i])
        plt.savefig(experiment_path + f'hists/{affective_keys[i]}.png', dpi=300)
    plt.close('all')

def get_clusters(affective_coordinates, save=False):
    if clustering_method in ['k_means', 'gmm',]:
        if clustering_method == 'k_means': model = KMeans(n_clusters=total_n_clusters)
        elif clustering_method == 'gmm': model = GaussianMixture(n_components=total_n_clusters, covariance_type="full")
        model.fit(affective_coordinates * np.array(dimensions_weights))

        def find_cluster(aff_coord):
            if aff_coord.ndim == 1:
                aff_coord = aff_coord.reshape(1, -1)
            return model.predict(aff_coord * np.array(dimensions_weights))
        cluster_centers = model.cluster_centers_ if clustering_method == 'k_means' else []
        if save:
            to_save = dict(cluster_model=model,
                           cluster_centers=cluster_centers,
                           nb_clusters=len(cluster_centers),
                           dimensions_weights=dimensions_weights)
            with open(cluster_model_path, 'wb') as f:
                pickle.dump(to_save, f)
        stop= 1

    elif clustering_method == 'handcoded':
        def find_cluster(aff_coord):
            if aff_coord.ndim == 1:
                aff_coord = aff_coord.reshape(1, -1)
            cluster_coordinates = []
            for i in range(aff_coord.shape[0]):
                cluster_coordinates.append([np.argwhere(affective_boundaries[j] <= aff_coord[i, j]).flatten()[-1] for j in range(3)])
            cluster_coordinates = np.array(cluster_coordinates)
            cluster_ids = cluster_coordinates[:, 0] * np.prod(n_splits[1:]) + cluster_coordinates[:, 1] * n_splits[-1] + cluster_coordinates[:, 2]
            return cluster_ids
        # find cluster centers
        cluster_centers = []
        for i in range(n_splits[0]):
            asd = affective_space_dimensions[0]
            x_coordinate = np.arange(asd[0] + 1 / n_splits[0], asd[1], (asd[1] - asd[0]) / n_splits[0])[i]
            for j in range(n_splits[1]):
                asd = affective_space_dimensions[1]
                y_coordinate = np.arange(asd[0] + 1 / n_splits[1], asd[1], (asd[1] - asd[0]) / n_splits[1])[j]
                for k in range(n_splits[2]):
                    asd = affective_space_dimensions[2]
                    z_coordinate = np.arange(asd[0] + 1 / n_splits[2], asd[1], (asd[1] - asd[0]) / n_splits[2])[k]
                    cluster_centers.append([x_coordinate, y_coordinate, z_coordinate])
        cluster_centers = np.array(cluster_centers)
    else:
        raise NotImplemented
    cluster_ids = find_cluster(affective_coordinates)
    return cluster_ids, cluster_centers, find_cluster


def cocktail2affect(cocktail_reps, save=False):
    if cocktail_reps.ndim == 1:
        cocktail_reps = cocktail_reps.reshape(1, -1)

    assert affective_keys == ['booze', 'sweet', 'sour', 'fizzy', 'complex', 'bitter', 'spicy', 'colorful']
    all_weights = []

    # valence
    # + sweet - bitter - booze + colorful
    weights = np.array([-1, 1, 0, 0, 0, -1, 0, 1])
    valence = (cocktail_reps * weights).sum(axis=1)
    if save:
        min_ = valence.min()
        max_ = valence.max()
        np.savetxt(min_max_path + 'min_valence.txt', np.array([min_]))
        np.savetxt(min_max_path + 'max_valence.txt', np.array([max_]))
    else:
        min_ = min_val
        max_ = max_val
    valence = 2 * ((valence - min_) / (max_ - min_) - 0.5)
    valence = sigmoid(valence, shift=0.1, beta=3.5)
    valence = valence.reshape(-1, 1)
    all_weights.append(weights.copy())

    # arousal
    # + fizzy + sour + complex - sweet + spicy + bitter
    # weights = np.array([0, -1, 1, 1, 1, 1, 1, 0])
    weights = np.array([0.7, 0, 1.5, 1.5, 0.6, 0, 0.6, 0])
    arousal = (cocktail_reps * weights).sum(axis=1)
    if save:
        min_ = arousal.min()
        max_ = arousal.max()
        np.savetxt(min_max_path + 'min_arousal.txt', np.array([min_]))
        np.savetxt(min_max_path + 'max_arousal.txt', np.array([max_]))
    else:
        min_, max_ = min_arousal, max_arousal
    arousal = 2 * ((arousal - min_) / (max_ - min_) - 0.5)  # normalize to -1, 1
    arousal = sigmoid(arousal, shift=0.3, beta=4)
    arousal = arousal.reshape(-1, 1)
    all_weights.append(weights.copy())

    # dominance
    # assert affective_keys == ['booze', 'sweet', 'sour', 'fizzy', 'complex', 'bitter', 'spicy', 'colorful']
    # + booze + fizzy - complex - bitter - sweet
    weights = np.array([1.5, -0.8, 0, 0.7, -1, -1.5, 0, 0])
    dominance = (cocktail_reps * weights).sum(axis=1)
    if save:
        min_ = dominance.min()
        max_ = dominance.max()
        np.savetxt(min_max_path + 'min_dominance.txt', np.array([min_]))
        np.savetxt(min_max_path + 'max_dominance.txt', np.array([max_]))
    else:
        min_, max_ = min_dom, max_dom
    dominance = 2 * ((dominance - min_) / (max_ - min_) - 0.5)
    dominance = sigmoid(dominance, shift=-0.05, beta=5)
    dominance = dominance.reshape(-1, 1)
    all_weights.append(weights.copy())

    affective_coordinates = np.concatenate([valence, arousal, dominance], axis=1)
    # if save:
    #     assert (affective_coordinates.min(axis=0) == np.array([ac[0] for ac in affective_space_dimensions])).all()
    #     assert (affective_coordinates.max(axis=0) == np.array([ac[1] for ac in affective_space_dimensions])).all()
    return affective_coordinates, all_weights

def save_reps(path, affective_cluster_ids):
    cocktail_data = pd.read_csv(path)
    rep_keys = get_bunch_of_rep_keys()['custom']
    cocktail_reps = np.array([cocktail_data[k] for k in rep_keys]).transpose()
    np.savetxt(experiment_path + 'clustered_representations/' + f'min_cocktail_reps_custom_keys_dim{cocktail_reps.shape[1]}.txt', cocktail_reps.min(axis=0))
    np.savetxt(experiment_path + 'clustered_representations/' + f'max_cocktail_reps_custom_keys_dim{cocktail_reps.shape[1]}.txt', cocktail_reps.max(axis=0))
    cocktail_reps = ((cocktail_reps - cocktail_reps.min(axis=0)) / (cocktail_reps.max(axis=0) - cocktail_reps.min(axis=0)) - 0.5) * 2  # normalize in -1, 1
    np.savetxt(experiment_path + 'clustered_representations/' + f'all_cocktail_reps_norm-1_1_custom_keys_dim{cocktail_reps.shape[1]}.txt', cocktail_reps)
    np.savetxt(experiment_path + 'clustered_representations/' + 'affective_cluster_ids.txt', affective_cluster_ids)
    for cluster_id in sorted(set(affective_cluster_ids)):
        indexes = np.argwhere(affective_cluster_ids == cluster_id).flatten()
        reps = cocktail_reps[indexes, :]
        np.savetxt(experiment_path + 'clustered_representations/' + f'rep_cluster{cluster_id}_norm-1_1_custom_keys_dim{cocktail_reps.shape[1]}.txt', reps)

def study_affects(affective_coordinates, affective_cluster_ids):
    plt.figure()
    plt.hist(affective_cluster_ids, bins=total_n_clusters)
    plt.xlabel('Affective cluster ids')
    plt.xticks(np.arange(total_n_clusters))
    plt.savefig(experiment_path + 'affective_cluster_distrib.png')
    fig = plt.gcf()
    plt.close(fig)

    fig = plt.figure()
    ax = fig.add_subplot(projection='3d')
    ax.set_xlim([-1, 1])
    ax.set_ylim([-1, 1])
    ax.set_zlim([-1, 1])
    for cluster_id in sorted(set(affective_cluster_ids)):
        indexes = np.argwhere(affective_cluster_ids == cluster_id).flatten()
        ax.scatter(affective_coordinates[indexes, 0], affective_coordinates[indexes, 1], affective_coordinates[indexes, 2], c=cluster_colors[cluster_id], s=150)
        ax.set_xlabel('Valence')
        ax.set_ylabel('Arousal')
        ax.set_zlabel('Dominance')
        stop = 1
    plt.savefig(experiment_path + 'scatters_affect/affective_mapping.png')
    fig = plt.gcf()
    plt.close(fig)

    affects = ['Valence', 'Arousal', 'Dominance']
    for i in range(3):
        for j in range(i + 1, 3):
            fig = plt.figure()
            ax = fig.add_subplot()
            for cluster_id in sorted(set(affective_cluster_ids)):
                indexes = np.argwhere(affective_cluster_ids == cluster_id).flatten()
                ax.scatter(affective_coordinates[indexes, i], affective_coordinates[indexes, j], alpha=0.5, c=cluster_colors[cluster_id], s=150)
            ax.set_xlabel(affects[i])
            ax.set_ylabel(affects[j])
            plt.savefig(experiment_path + f'scatters_affect/scatter_{affects[i]}_vs_{affects[j]}.png')
            fig = plt.gcf()
            plt.close(fig)
        plt.figure()
        plt.hist(affective_coordinates[:, i])
        plt.xlabel(affects[i])
        plt.savefig(experiment_path + f'hists_affect/hist_{affects[i]}.png')
        fig = plt.gcf()
        plt.close(fig)
    plt.close('all')
    stop = 1

def sample_clusters(path, cocktail_reps, all_weights, affective_cluster_ids, affective_cluster_centers, affective_coordinates, n_samples=4):
    cocktail_data = pd.read_csv(path)
    these_cocktail_reps = normalize_cocktail_reps_affective(np.array([cocktail_data[k] for k in original_affective_keys]).transpose())

    names = cocktail_data['names']
    urls = cocktail_data['urls']
    ingr_str = cocktail_data['ingredients_str']
    for cluster_id in sorted(set(affective_cluster_ids)):
        indexes = np.argwhere(affective_cluster_ids == cluster_id).flatten()
        print('\n\n\n---------\n----------\n-----------\n')
        cluster_str = ''
        cluster_str += f'Affective cluster #{cluster_id}' + \
                       f'\n\tSize: {len(indexes)}' + \
                       f'\n\tCenter: ' + \
                       f'\n\t\tVal: {affective_cluster_centers[cluster_id][0]:.2f}, ' + \
                       f'\n\t\tArousal: {affective_cluster_centers[cluster_id][1]:.2f}, ' + \
                       f'\n\t\tDominance: {affective_cluster_centers[cluster_id][2]:.2f}'
        print(cluster_str)
        if affective_cluster_centers[cluster_id][2] == np.max(affective_cluster_centers[:, 2]):
            stop = 1
        sampled_idx = np.random.choice(indexes, size=min(len(indexes), n_samples), replace=False)
        cocktail_str = ''
        for i in sampled_idx:
            assert np.sum(cocktail_reps[i] - these_cocktail_reps[i]) < 1e-9
            cocktail_str += f'\n\n-------------'
            cocktail_str += print_recipe(ingr_str[i], name=names[i], to_print=False)
            cocktail_str +=  f'\nUrl: {urls[i]}'
            cocktail_str +=  '\n\nRepresentation: ' + ', '.join([f'{af}: {cr:.2f}' for af, cr in zip(affective_keys, cocktail_reps[i])]) + '\n'
            cocktail_str += '\n' + generate_explanation(cocktail_reps[i], all_weights, affective_coordinates[i])
            print(cocktail_str)
            stop = 1
        cluster_str += '\n' + cocktail_str
        with open(f"/home/cedric/Documents/pianocktail/experiments/cocktails/representation_analysis/affective_mapping/clusters/cluster_{cluster_id}", 'w') as f:
            f.write(cluster_str)
    stop = 1

def explanation_per_dimension(i, cocktail_rep, all_weights, aff_coord):
    names = ['valence', 'arousal', 'dominance']
    weights = all_weights[i]
    explanation_str = f'\n{names[i].capitalize()} explanation ({aff_coord[i]:.2f}):'
    strengths = np.abs(weights * cocktail_rep)
    strengths /= strengths.sum()
    indexes = np.flip(np.argsort(strengths))
    for ind in indexes:
        if strengths[ind] != 0:
            if np.sign(weights[ind]) == np.sign(cocktail_rep[ind]):
                keyword = 'high' if cocktail_rep[ind] > 0 else 'low'
                explanation_str += f'\n\t{int(strengths[ind]*100)}%: higher {names[i]} because {keyword} {affective_keys[ind]}'
            else:
                keyword = 'high' if cocktail_rep[ind] > 0 else 'low'
                explanation_str += f'\n\t{int(strengths[ind]*100)}%: low {names[i]} because {keyword} {affective_keys[ind]}'
    return explanation_str

def generate_explanation(cocktail_rep, all_weights, aff_coord):
    explanation_str = ''
    for i in range(3):
        explanation_str += explanation_per_dimension(i, cocktail_rep, all_weights, aff_coord)
    return explanation_str

def cocktails2affect_clusters(cocktail_rep):
    if cocktail_rep.ndim == 1:
        cocktail_rep = cocktail_rep.reshape(1, -1)
    affective_coordinates, _ = cocktail2affect(cocktail_rep)
    affective_cluster_ids, _, _ = get_clusters(affective_coordinates)
    return affective_cluster_ids


def setup_affective_space(path, save=False):
    cocktail_data = pd.read_csv(path)
    names = cocktail_data['names']
    recipes = cocktail_data['ingredients_str']
    urls = cocktail_data['urls']
    reps = get_cocktail_reps(path)
    affective_coordinates, all_weights = cocktail2affect(reps)
    affective_cluster_ids, affective_cluster_centers, find_cluster = get_clusters(affective_coordinates, save=save)
    nn_model = NearestNeighbors(n_neighbors=1)
    nn_model.fit(affective_coordinates)
    def cocktail2affect_cluster(cocktail_rep):
        affective_coordinates, _ = cocktail2affect(cocktail_rep)
        return find_cluster(affective_coordinates)

    affective_clusters = dict(affective_coordinates=affective_coordinates,  # coordinates of cocktail in affective space
                              affective_cluster_ids=affective_cluster_ids,  # cluster id of cocktails
                              affective_cluster_centers=affective_cluster_centers, # cluster centers in affective space
                              affective_weights=all_weights,  # weights to compute valence, arousal, dominance from cocktail representations
                              original_affective_keys=original_affective_keys,
                              cocktail_reps=reps,  # cocktail representations from the dataset (normalized)
                              find_cluster=find_cluster,  # function to retrieve a cluster from affective coordinates
                              nn_model=nn_model,  # to predict the nearest neighbor affective space,
                              names=names, # names of cocktails in the dataset
                              urls=urls,  # urls from the dataset
                              recipes=recipes, # recipes of the dataset
                              cocktail2affect=cocktail2affect,  # function to compute affects from cocktail representations
                              cocktails2affect_clusters=cocktails2affect_clusters,
                              cocktail2affect_cluster=cocktail2affect_cluster
                              )

    return affective_clusters

if __name__ == '__main__':
    reps = get_cocktail_reps(COCKTAILS_CSV_DATA, save=True)
    # plot(reps)
    affective_coordinates, all_weights = cocktail2affect(reps, save=True)
    affective_cluster_ids, affective_cluster_centers, find_cluster = get_clusters(affective_coordinates)
    save_reps(COCKTAILS_CSV_DATA, affective_cluster_ids)
    study_affects(affective_coordinates, affective_cluster_ids)
    sample_clusters(COCKTAILS_CSV_DATA, reps, all_weights, affective_cluster_ids, affective_cluster_centers, affective_coordinates)
    setup_affective_space(COCKTAILS_CSV_DATA, save=True)