Spaces:
Runtime error
Runtime error
File size: 19,441 Bytes
e775f6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import pandas as pd
import numpy as np
import os
from src.cocktails.utilities.cocktail_utilities import get_bunch_of_rep_keys
from src.cocktails.utilities.other_scrubbing_utilities import print_recipe
from src.cocktails.config import COCKTAILS_CSV_DATA
from src.music.config import CHECKPOINTS_PATH, EXPERIMENT_PATH
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import NearestNeighbors
import pickle
import random
experiment_path = EXPERIMENT_PATH + '/cocktails/representation_analysis/affective_mapping/'
min_max_path = CHECKPOINTS_PATH + "/cocktail_representation/minmax/"
cluster_model_path = CHECKPOINTS_PATH + "/music2cocktails/affects2affect_cluster/cluster_model.pickle"
affective_space_dimensions = ((-1, 1), (-1, 1), (-1, 1)) # valence, arousal, dominance
n_splits = (3, 3, 2) # number of bins per dimension
# dimensions_weights = [1, 1, 0.5]
dimensions_weights = [1, 1, 1]
total_n_clusters = np.prod(n_splits) # total number of bins
affective_boundaries = [np.arange(asd[0], asd[1]+1e-6, (asd[1] - asd[0]) / n_split) for asd, n_split in zip(affective_space_dimensions, n_splits)]
for af in affective_boundaries:
af[-1] += 1e-6
all_keys = get_bunch_of_rep_keys()['custom']
original_affective_keys = get_bunch_of_rep_keys()['affective']
affective_keys = [a.split(' ')[1] for a in original_affective_keys]
random.seed(0)
cluster_colors = ['#%06X' % random.randint(0, 0xFFFFFF) for _ in range(total_n_clusters)]
clustering_method = 'k_means' # 'k_means', 'handcoded', 'agglo', 'spectral'
if clustering_method != 'handcoded':
total_n_clusters = 10
min_arousal = np.loadtxt(min_max_path + 'min_arousal.txt')
max_arousal = np.loadtxt(min_max_path + 'max_arousal.txt')
min_val = np.loadtxt(min_max_path + 'min_valence.txt')
max_val = np.loadtxt(min_max_path + 'max_valence.txt')
min_dom = np.loadtxt(min_max_path + 'min_dominance.txt')
max_dom = np.loadtxt(min_max_path + 'max_dominance.txt')
def get_cocktail_reps(path, save=False):
cocktail_data = pd.read_csv(path)
cocktail_reps = np.array([cocktail_data[k] for k in original_affective_keys]).transpose()
n_data, dim_rep = cocktail_reps.shape
# print(f'{n_data} data points of {dim_rep} dimensions: {affective_keys}')
cocktail_reps = normalize_cocktail_reps_affective(cocktail_reps, save=save)
if save:
np.savetxt(experiment_path + f'cocktail_reps_for_affective_mapping_-1_1_norm_sigmoid_rescaling_{dim_rep}_keys.txt', cocktail_reps)
return cocktail_reps
def sigmoid(x, shift, beta):
return (1 / (1 + np.exp(-(x + shift) * beta)) - 0.5) * 2
def normalize_cocktail_reps_affective(cocktail_reps, save=False):
if save:
min_cr = cocktail_reps.min(axis=0)
max_cr = cocktail_reps.max(axis=0)
np.savetxt(min_max_path + 'min_cocktail_reps_affective.txt', min_cr)
np.savetxt(min_max_path + 'max_cocktail_reps_affective.txt', max_cr)
else:
min_cr = np.loadtxt(min_max_path + 'min_cocktail_reps_affective.txt')
max_cr = np.loadtxt(min_max_path + 'max_cocktail_reps_affective.txt')
cocktail_reps = ((cocktail_reps - min_cr) / (max_cr - min_cr) - 0.5) * 2
cocktail_reps[:, 0] = sigmoid(cocktail_reps[:, 0], shift=0.05, beta=4)
cocktail_reps[:, 1] = sigmoid(cocktail_reps[:, 1], shift=0.3, beta=5)
cocktail_reps[:, 2] = sigmoid(cocktail_reps[:, 2], shift=0.15, beta=3)
cocktail_reps[:, 3] = sigmoid(cocktail_reps[:, 3], shift=0.9, beta=20)
cocktail_reps[:, 4] = sigmoid(cocktail_reps[:, 4], shift=0, beta=4)
cocktail_reps[:, 5] = sigmoid(cocktail_reps[:, 5], shift=0.2, beta=3)
cocktail_reps[:, 6] = sigmoid(cocktail_reps[:, 6], shift=0.5, beta=5)
cocktail_reps[:, 7] = sigmoid(cocktail_reps[:, 7], shift=0.2, beta=6)
return cocktail_reps
def plot(cocktail_reps):
dim_rep = cocktail_reps.shape[1]
for i in range(dim_rep):
for j in range(i+1, dim_rep):
plt.figure()
plt.scatter(cocktail_reps[:, i], cocktail_reps[:, j], s=150, alpha=0.5)
plt.xlabel(affective_keys[i])
plt.ylabel(affective_keys[j])
plt.savefig(experiment_path + f'scatters/{affective_keys[i]}_vs_{affective_keys[j]}.png', dpi=300)
plt.close('all')
plt.figure()
plt.hist(cocktail_reps[:, i])
plt.xlabel(affective_keys[i])
plt.savefig(experiment_path + f'hists/{affective_keys[i]}.png', dpi=300)
plt.close('all')
def get_clusters(affective_coordinates, save=False):
if clustering_method in ['k_means', 'gmm',]:
if clustering_method == 'k_means': model = KMeans(n_clusters=total_n_clusters)
elif clustering_method == 'gmm': model = GaussianMixture(n_components=total_n_clusters, covariance_type="full")
model.fit(affective_coordinates * np.array(dimensions_weights))
def find_cluster(aff_coord):
if aff_coord.ndim == 1:
aff_coord = aff_coord.reshape(1, -1)
return model.predict(aff_coord * np.array(dimensions_weights))
cluster_centers = model.cluster_centers_ if clustering_method == 'k_means' else []
if save:
to_save = dict(cluster_model=model,
cluster_centers=cluster_centers,
nb_clusters=len(cluster_centers),
dimensions_weights=dimensions_weights)
with open(cluster_model_path, 'wb') as f:
pickle.dump(to_save, f)
stop= 1
elif clustering_method == 'handcoded':
def find_cluster(aff_coord):
if aff_coord.ndim == 1:
aff_coord = aff_coord.reshape(1, -1)
cluster_coordinates = []
for i in range(aff_coord.shape[0]):
cluster_coordinates.append([np.argwhere(affective_boundaries[j] <= aff_coord[i, j]).flatten()[-1] for j in range(3)])
cluster_coordinates = np.array(cluster_coordinates)
cluster_ids = cluster_coordinates[:, 0] * np.prod(n_splits[1:]) + cluster_coordinates[:, 1] * n_splits[-1] + cluster_coordinates[:, 2]
return cluster_ids
# find cluster centers
cluster_centers = []
for i in range(n_splits[0]):
asd = affective_space_dimensions[0]
x_coordinate = np.arange(asd[0] + 1 / n_splits[0], asd[1], (asd[1] - asd[0]) / n_splits[0])[i]
for j in range(n_splits[1]):
asd = affective_space_dimensions[1]
y_coordinate = np.arange(asd[0] + 1 / n_splits[1], asd[1], (asd[1] - asd[0]) / n_splits[1])[j]
for k in range(n_splits[2]):
asd = affective_space_dimensions[2]
z_coordinate = np.arange(asd[0] + 1 / n_splits[2], asd[1], (asd[1] - asd[0]) / n_splits[2])[k]
cluster_centers.append([x_coordinate, y_coordinate, z_coordinate])
cluster_centers = np.array(cluster_centers)
else:
raise NotImplemented
cluster_ids = find_cluster(affective_coordinates)
return cluster_ids, cluster_centers, find_cluster
def cocktail2affect(cocktail_reps, save=False):
if cocktail_reps.ndim == 1:
cocktail_reps = cocktail_reps.reshape(1, -1)
assert affective_keys == ['booze', 'sweet', 'sour', 'fizzy', 'complex', 'bitter', 'spicy', 'colorful']
all_weights = []
# valence
# + sweet - bitter - booze + colorful
weights = np.array([-1, 1, 0, 0, 0, -1, 0, 1])
valence = (cocktail_reps * weights).sum(axis=1)
if save:
min_ = valence.min()
max_ = valence.max()
np.savetxt(min_max_path + 'min_valence.txt', np.array([min_]))
np.savetxt(min_max_path + 'max_valence.txt', np.array([max_]))
else:
min_ = min_val
max_ = max_val
valence = 2 * ((valence - min_) / (max_ - min_) - 0.5)
valence = sigmoid(valence, shift=0.1, beta=3.5)
valence = valence.reshape(-1, 1)
all_weights.append(weights.copy())
# arousal
# + fizzy + sour + complex - sweet + spicy + bitter
# weights = np.array([0, -1, 1, 1, 1, 1, 1, 0])
weights = np.array([0.7, 0, 1.5, 1.5, 0.6, 0, 0.6, 0])
arousal = (cocktail_reps * weights).sum(axis=1)
if save:
min_ = arousal.min()
max_ = arousal.max()
np.savetxt(min_max_path + 'min_arousal.txt', np.array([min_]))
np.savetxt(min_max_path + 'max_arousal.txt', np.array([max_]))
else:
min_, max_ = min_arousal, max_arousal
arousal = 2 * ((arousal - min_) / (max_ - min_) - 0.5) # normalize to -1, 1
arousal = sigmoid(arousal, shift=0.3, beta=4)
arousal = arousal.reshape(-1, 1)
all_weights.append(weights.copy())
# dominance
# assert affective_keys == ['booze', 'sweet', 'sour', 'fizzy', 'complex', 'bitter', 'spicy', 'colorful']
# + booze + fizzy - complex - bitter - sweet
weights = np.array([1.5, -0.8, 0, 0.7, -1, -1.5, 0, 0])
dominance = (cocktail_reps * weights).sum(axis=1)
if save:
min_ = dominance.min()
max_ = dominance.max()
np.savetxt(min_max_path + 'min_dominance.txt', np.array([min_]))
np.savetxt(min_max_path + 'max_dominance.txt', np.array([max_]))
else:
min_, max_ = min_dom, max_dom
dominance = 2 * ((dominance - min_) / (max_ - min_) - 0.5)
dominance = sigmoid(dominance, shift=-0.05, beta=5)
dominance = dominance.reshape(-1, 1)
all_weights.append(weights.copy())
affective_coordinates = np.concatenate([valence, arousal, dominance], axis=1)
# if save:
# assert (affective_coordinates.min(axis=0) == np.array([ac[0] for ac in affective_space_dimensions])).all()
# assert (affective_coordinates.max(axis=0) == np.array([ac[1] for ac in affective_space_dimensions])).all()
return affective_coordinates, all_weights
def save_reps(path, affective_cluster_ids):
cocktail_data = pd.read_csv(path)
rep_keys = get_bunch_of_rep_keys()['custom']
cocktail_reps = np.array([cocktail_data[k] for k in rep_keys]).transpose()
np.savetxt(experiment_path + 'clustered_representations/' + f'min_cocktail_reps_custom_keys_dim{cocktail_reps.shape[1]}.txt', cocktail_reps.min(axis=0))
np.savetxt(experiment_path + 'clustered_representations/' + f'max_cocktail_reps_custom_keys_dim{cocktail_reps.shape[1]}.txt', cocktail_reps.max(axis=0))
cocktail_reps = ((cocktail_reps - cocktail_reps.min(axis=0)) / (cocktail_reps.max(axis=0) - cocktail_reps.min(axis=0)) - 0.5) * 2 # normalize in -1, 1
np.savetxt(experiment_path + 'clustered_representations/' + f'all_cocktail_reps_norm-1_1_custom_keys_dim{cocktail_reps.shape[1]}.txt', cocktail_reps)
np.savetxt(experiment_path + 'clustered_representations/' + 'affective_cluster_ids.txt', affective_cluster_ids)
for cluster_id in sorted(set(affective_cluster_ids)):
indexes = np.argwhere(affective_cluster_ids == cluster_id).flatten()
reps = cocktail_reps[indexes, :]
np.savetxt(experiment_path + 'clustered_representations/' + f'rep_cluster{cluster_id}_norm-1_1_custom_keys_dim{cocktail_reps.shape[1]}.txt', reps)
def study_affects(affective_coordinates, affective_cluster_ids):
plt.figure()
plt.hist(affective_cluster_ids, bins=total_n_clusters)
plt.xlabel('Affective cluster ids')
plt.xticks(np.arange(total_n_clusters))
plt.savefig(experiment_path + 'affective_cluster_distrib.png')
fig = plt.gcf()
plt.close(fig)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.set_xlim([-1, 1])
ax.set_ylim([-1, 1])
ax.set_zlim([-1, 1])
for cluster_id in sorted(set(affective_cluster_ids)):
indexes = np.argwhere(affective_cluster_ids == cluster_id).flatten()
ax.scatter(affective_coordinates[indexes, 0], affective_coordinates[indexes, 1], affective_coordinates[indexes, 2], c=cluster_colors[cluster_id], s=150)
ax.set_xlabel('Valence')
ax.set_ylabel('Arousal')
ax.set_zlabel('Dominance')
stop = 1
plt.savefig(experiment_path + 'scatters_affect/affective_mapping.png')
fig = plt.gcf()
plt.close(fig)
affects = ['Valence', 'Arousal', 'Dominance']
for i in range(3):
for j in range(i + 1, 3):
fig = plt.figure()
ax = fig.add_subplot()
for cluster_id in sorted(set(affective_cluster_ids)):
indexes = np.argwhere(affective_cluster_ids == cluster_id).flatten()
ax.scatter(affective_coordinates[indexes, i], affective_coordinates[indexes, j], alpha=0.5, c=cluster_colors[cluster_id], s=150)
ax.set_xlabel(affects[i])
ax.set_ylabel(affects[j])
plt.savefig(experiment_path + f'scatters_affect/scatter_{affects[i]}_vs_{affects[j]}.png')
fig = plt.gcf()
plt.close(fig)
plt.figure()
plt.hist(affective_coordinates[:, i])
plt.xlabel(affects[i])
plt.savefig(experiment_path + f'hists_affect/hist_{affects[i]}.png')
fig = plt.gcf()
plt.close(fig)
plt.close('all')
stop = 1
def sample_clusters(path, cocktail_reps, all_weights, affective_cluster_ids, affective_cluster_centers, affective_coordinates, n_samples=4):
cocktail_data = pd.read_csv(path)
these_cocktail_reps = normalize_cocktail_reps_affective(np.array([cocktail_data[k] for k in original_affective_keys]).transpose())
names = cocktail_data['names']
urls = cocktail_data['urls']
ingr_str = cocktail_data['ingredients_str']
for cluster_id in sorted(set(affective_cluster_ids)):
indexes = np.argwhere(affective_cluster_ids == cluster_id).flatten()
print('\n\n\n---------\n----------\n-----------\n')
cluster_str = ''
cluster_str += f'Affective cluster #{cluster_id}' + \
f'\n\tSize: {len(indexes)}' + \
f'\n\tCenter: ' + \
f'\n\t\tVal: {affective_cluster_centers[cluster_id][0]:.2f}, ' + \
f'\n\t\tArousal: {affective_cluster_centers[cluster_id][1]:.2f}, ' + \
f'\n\t\tDominance: {affective_cluster_centers[cluster_id][2]:.2f}'
print(cluster_str)
if affective_cluster_centers[cluster_id][2] == np.max(affective_cluster_centers[:, 2]):
stop = 1
sampled_idx = np.random.choice(indexes, size=min(len(indexes), n_samples), replace=False)
cocktail_str = ''
for i in sampled_idx:
assert np.sum(cocktail_reps[i] - these_cocktail_reps[i]) < 1e-9
cocktail_str += f'\n\n-------------'
cocktail_str += print_recipe(ingr_str[i], name=names[i], to_print=False)
cocktail_str += f'\nUrl: {urls[i]}'
cocktail_str += '\n\nRepresentation: ' + ', '.join([f'{af}: {cr:.2f}' for af, cr in zip(affective_keys, cocktail_reps[i])]) + '\n'
cocktail_str += '\n' + generate_explanation(cocktail_reps[i], all_weights, affective_coordinates[i])
print(cocktail_str)
stop = 1
cluster_str += '\n' + cocktail_str
with open(f"/home/cedric/Documents/pianocktail/experiments/cocktails/representation_analysis/affective_mapping/clusters/cluster_{cluster_id}", 'w') as f:
f.write(cluster_str)
stop = 1
def explanation_per_dimension(i, cocktail_rep, all_weights, aff_coord):
names = ['valence', 'arousal', 'dominance']
weights = all_weights[i]
explanation_str = f'\n{names[i].capitalize()} explanation ({aff_coord[i]:.2f}):'
strengths = np.abs(weights * cocktail_rep)
strengths /= strengths.sum()
indexes = np.flip(np.argsort(strengths))
for ind in indexes:
if strengths[ind] != 0:
if np.sign(weights[ind]) == np.sign(cocktail_rep[ind]):
keyword = 'high' if cocktail_rep[ind] > 0 else 'low'
explanation_str += f'\n\t{int(strengths[ind]*100)}%: higher {names[i]} because {keyword} {affective_keys[ind]}'
else:
keyword = 'high' if cocktail_rep[ind] > 0 else 'low'
explanation_str += f'\n\t{int(strengths[ind]*100)}%: low {names[i]} because {keyword} {affective_keys[ind]}'
return explanation_str
def generate_explanation(cocktail_rep, all_weights, aff_coord):
explanation_str = ''
for i in range(3):
explanation_str += explanation_per_dimension(i, cocktail_rep, all_weights, aff_coord)
return explanation_str
def cocktails2affect_clusters(cocktail_rep):
if cocktail_rep.ndim == 1:
cocktail_rep = cocktail_rep.reshape(1, -1)
affective_coordinates, _ = cocktail2affect(cocktail_rep)
affective_cluster_ids, _, _ = get_clusters(affective_coordinates)
return affective_cluster_ids
def setup_affective_space(path, save=False):
cocktail_data = pd.read_csv(path)
names = cocktail_data['names']
recipes = cocktail_data['ingredients_str']
urls = cocktail_data['urls']
reps = get_cocktail_reps(path)
affective_coordinates, all_weights = cocktail2affect(reps)
affective_cluster_ids, affective_cluster_centers, find_cluster = get_clusters(affective_coordinates, save=save)
nn_model = NearestNeighbors(n_neighbors=1)
nn_model.fit(affective_coordinates)
def cocktail2affect_cluster(cocktail_rep):
affective_coordinates, _ = cocktail2affect(cocktail_rep)
return find_cluster(affective_coordinates)
affective_clusters = dict(affective_coordinates=affective_coordinates, # coordinates of cocktail in affective space
affective_cluster_ids=affective_cluster_ids, # cluster id of cocktails
affective_cluster_centers=affective_cluster_centers, # cluster centers in affective space
affective_weights=all_weights, # weights to compute valence, arousal, dominance from cocktail representations
original_affective_keys=original_affective_keys,
cocktail_reps=reps, # cocktail representations from the dataset (normalized)
find_cluster=find_cluster, # function to retrieve a cluster from affective coordinates
nn_model=nn_model, # to predict the nearest neighbor affective space,
names=names, # names of cocktails in the dataset
urls=urls, # urls from the dataset
recipes=recipes, # recipes of the dataset
cocktail2affect=cocktail2affect, # function to compute affects from cocktail representations
cocktails2affect_clusters=cocktails2affect_clusters,
cocktail2affect_cluster=cocktail2affect_cluster
)
return affective_clusters
if __name__ == '__main__':
reps = get_cocktail_reps(COCKTAILS_CSV_DATA, save=True)
# plot(reps)
affective_coordinates, all_weights = cocktail2affect(reps, save=True)
affective_cluster_ids, affective_cluster_centers, find_cluster = get_clusters(affective_coordinates)
save_reps(COCKTAILS_CSV_DATA, affective_cluster_ids)
study_affects(affective_coordinates, affective_cluster_ids)
sample_clusters(COCKTAILS_CSV_DATA, reps, all_weights, affective_cluster_ids, affective_cluster_centers, affective_coordinates)
setup_affective_space(COCKTAILS_CSV_DATA, save=True)
|